The molality of a solute is equal to the moles of solute per kg of solvent. We are given the mole fraction of I₂ in CH₂Cl₂ is <em>X</em> = 0.115. If we can an arbitrary sample of 1 mole of solution, we will have:
0.115 mol I₂
1 - 0.115 = 0.885 mol CH₂Cl₂
We need moles of solute, which we have, and must convert our moles of solvent to kg:
0.885 mol x 84.93 g/mol = 75.2 g CH₂Cl₂ x 1 kg/1000g = 0.0752 kg CH₂Cl₂
We can now calculate the molality:
m = 0.115 mol I₂/0.0752 kg CH₂Cl₂
m = 1.53 mol I₂/kg CH₂Cl₂
The molality of the iodine solution is 1.53.
2.168 L of air will leave the container as it warms
<h3>Further explanation</h3>
Given
V₁=2.05 L
T₁ = 5 + 273 = 278 K
T₂ = 21 + 273 = 294 K
Required
Volume of air
Solution
Charles's Law
When the gas pressure is kept constant, the gas volume is proportional to the temperature

Input the value :
V₂=(V₁.T₂)/T₁
V₂=(2.05 x 294)/278
V₂=2.168 L
If you need half the volume, you need double the pressure (V * p). Normal air pressure in the atmosphere is 101300 Pa so that means you need double that, thus 202600 Pa (or 2,026 bars)
Explanation:
Here are the answers. Do note that I had to convert the enthalpy to joules and temperature to Kelvin to make the unit for entropy work out.