Answer:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
Explanation:
H₂²⁺(aq) + O₂²⁻(aq) + Mg²⁺(aq) + SO₃²⁻(aq) → Mg²⁺(aq) + SO²⁻₄(aq) + H₂O(l)
A careful observation of the equation above, shows that the equation is already balanced.
To obtain the net ionic equation, we simply cancel Mg²⁺ from both side of the equation as shown below:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
C + O2= CO2



CO2 is limit
5.4-3.72= 1.68 g of C is excess
5.4 g = 100%
3.72 g = x
x=68.9 %
Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃
Answer:
They are most likely solid
Explanation:
solid is a physical property
Hydrogen ion, strictly, the nucleus of a hydrogen atom separated from its accompanying electron. The hydrogen nucleus is made up of a particle carrying a unit positive electric charge, called a proton. The isolated hydrogen ion, represented by the symbol H+, is therefore customarily used to represent a proton.