The efficiency of the device is 30 %
Explanation:
The efficiency of a heat engine is given by:

where
W is the work done by the engine
is the heat in input to the engine
For the device in this problem, we have:
W = 120 J is the work done
is the heat in input
Substituting, we find the efficiency:

which corresponds to an efficiency of 30%.
Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
a) 1. 1365 × 10⁻⁹N
b) 9.1862 × 10⁻⁴⁶N
c) 8.61 × 10⁻¹¹C/Kg
Explanation:
Ke = 8.99× 109 N.m2
/ C2
, G = 6.67 × 10-11 N. m2
/ kg2
a) F = Ke . q₁.q₂/r²
= (8.99× 109 N.m2
/ C2
) ×(1.60×10⁻¹⁹C)²/(4.50×10⁻¹⁰C)²
= 1. 1365 × 10⁻⁹N
b)
F = Gm₁m₂/r²
= (6.67× 10⁻¹¹)×(1.67×10⁻²⁷)²/(4.50×10⁻¹⁰)²
= 9.1862 × 10⁻⁴⁶N
The electric force is larger by 8.0497 ×10³⁷ times
c)
if Keq₁q₂/r² Gm₁m₂/r²,
with q₁=q₂ = q, and m₁ =m₂ = m
Then q/m =
= 
= 8.61 × 10⁻¹¹C/Kg
Answer:
When extra energy is added
Explanation:
When the ball is released from rest and swings back towards your face, it will only pass closer to the end of the nose as per the initial conditions. However, when extra energy is added to the ball, it strikes the nose since its velocity and heights are increased. Therefore, the only condition under which the ball hits your nose is when extra energy is added to the system.
Mass of the milkyway galaxy :

The magnitude of the mass of the Milky Way galaxy = 
<h3>Can galaxies recycle stars?</h3>
Galaxies do not appear to have sufficient matter inside them to keep shaping modern stars at the rates that they do. Presently, astronomers have caught a universe within the act of reusing fabric that it already tossed out, which may clarify the discrepancy. New perceptions give the primary coordinate evidence of gas streaming into distant galaxies that are effectively making infant stars, offering support for the "galactic recycling" theory.
To learn more about galactic recycling, visit;
brainly.com/question/6272572
#SPJ4
Answer:

Explanation:
<u>Net Force</u>
The Second Newton's law states that an object acquires acceleration when an external unbalanced net force is applied to it.
That acceleration is proportional to the net force and inversely proportional to the mass of the object.
It can be expressed with the formula:

Where
Fn = Net force
m = mass
The m=200 kg crate is pushed horizontally with a force Fa=700 N. The friction force opposes motion and a horizontal net force appears causing the acceleration.
The forces on the vertical direction are in balance since the crate does not accelerate in that direction, thus the weight and the normal force are equal:
N = W = mg
The friction force can be calculated by using the coefficient of friction μ:

Calculating the normal force:
N = 200 * 9.8 = 1,960 N
The friction force is:


The horizontal net force is:


Finally, the acceleration is computed:

