The potential energy of the block is given by:
V = m*g*h
m mass
g = 9.81m/s²
h height
The potential energy of a spring is given by:
V = 0.5 * k * x²
k spring constant
x compression of the spring
If the block starts from rest it has potential energy, but no kinetic energy. As it slides down the incline potential energy is converted into kinetic energy. When the block hits the spring the kinetic energy is converted into spring's potential energy. If the spring is fully compressed and the block is at rest again, the block has transferred all its energy into the spring. No energy is lost. So we can write:
m * g * h = 0.5 * k * x²
m = 0.5 kg
g = 9.81 m/s²
h = 2.5m * sin 37° = 1,5 m
x = 0,6 m
Solve for k.
k = 2 * m * g * h / x² = 40.8 N/m
Answer:
See below
Explanation:
F = ma
F = 12 * 9 = 108 N
108 N needed <u> add 30 N more east </u>
Answer:
0.009 N, repulsive
Explanation:
The electrostatic force between two electric charges is given by:

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
In this problem, we have
are the two charges
r = 4.5 m is their separation
Substituting into the equation, we find

Moreover, the force is repulsive. In fact, the following rules apply:
- When two charges have same sign, they repel each other
- When two charges have opposite signs, they attract each other
The solution is 22 2(n+3)-4&6
Answer:
Find answers below.
Explanation:
1. Radiant: the energy of light.
2. Light: makes it possible to see things.
3. Sun: a source of light. This source of light is referred to as solar energy and it's renewable source of energy.
4. Crest: top of wave. Thus, it's typically the highest part of an electromagnetic wave.
5. Trough: bottom of wave. Thus, it's typically the lowest part of an electromagnetic wave.
6. Wavelength: distance from one point on one wave to the same point on the next wave.
7. Infrared light: it has longer wavelengths than visible light.
8. X-rays: shorter wavelengths than visible light.
Electromagnetic waves is a propagating medium used in all communications device to transmit data (messages) from the device of the sender to the device of the receiver.
An electromagnetic spectrum refers to a range of frequency and wavelength that an electromagnetic wave is distributed or extends. The electromagnetic spectrum comprises of gamma rays, visible light, ultraviolet radiation, x-rays, radio waves, and infrared radiation.