Answer:
12.7 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 56.7 Km/hr
Maximum height (h) =..?
First, we shall convert 56.7 Km/hr to m/s. This can be obtained as follow:
Initial velocity (m/s) = 56.7 x 1000/3600
Initial velocity (m/s) = 15.75 m/s
Next, we shall determine the time taken to get to the maximum height. This can be obtained as follow:
Initial velocity (u) = 15.75 m/s
Final velocity (v) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
v = u – gt (since the ball is going against gravity)
0 = 15.75 – 9.8 × t
Rearrange
9.8 × t = 15.75
Divide both side by 9.8
t = 15.75/9.8
t = 1.61 secs.
Finally, we shall determine the maximum height as follow
h = ½gt²
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 1.61 secs.
Height (h) =..?
h = ½gt²
h = ½ × 9.8 × 1.61²
h = 4.9 x 1.61²
h = 12.7 m
Therefore, the maximum height reached by the ball is 12.7 m
Answer:
25.8 lb/in²
Explanation:
Gay-Lussac's law tells us that given an ideal gas of a certain mass has a constant volume, the pressure exerted on the sides of its container is directly proportional to its absolute temperature.

All 3 objects have the same mass
Answer:
10 seconds
Explanation:
We have the equation V = at (speed = acceleration x time)
We want to find the time, so can rearrange to T = V/a (time = speed / acceleration).
From the question, we know V is 5 and a is 0.5.
Now we can substitute that into our equation: 5/0.5 = 10.
So the time is 10 seconds.
Hope this helps! Let me know if you have any questions :)