A sound wave is a longitudinal wave
The impulse given to the ball is equal to the change in its momentum:
J = ∆p = (0.50 kg) (5.6 m/s - 0) = 2.8 kg•m/s
This is also equal to the product of the average force and the time interval ∆t :
J = F(ave) ∆t
so that if F(ave) = 200 N, then
∆t = J / F(ave) = (2.8 kg•m/s) / (200 N) = 0.014 s
Answer: amplitude
Explanation: This describes the maximum amount of the displacement of a particle from it rest position. Usually, it is measured in metres
Since we are considering AM which is amplitude modulation, a technique used in electronic communication, most commonly for broadcasting information through a radio carrier wave. In amplitude modulation, the amplitude (signal strength) of the carrier wave is diversified in proportion to that of the message signal being broadcasted.
Answer:
<em> B.0</em>
Explanation:
Change in momentum: This is defined as the product of mass and change in velocity of a body. or it can be defined as the product of force and time of a body. The fundamental unit of change in momentum is kg.m/s
Change in momentum = M(V-U)......................... Equation 1
where M = mass of the ball, V = final velocity of the ball, U = initial velocity of the ball.
Let: M = m kg and V = U = v m/s
Substituting these values into equation 1
Change in momentum = m(v-v)
Change in momentum = m(0)
Change in momentum = 0 kg.m/s
<em>Therefore the momentum of the ball has not changed.</em>
<em>The right option is B.0</em>