Protista .................................
The correct answers would be A, and D
Potassium oxide: K₂O.
There's no need for prefixes since K₂O is an ionic compound.
<h3>Explanation</h3>
Find the two elements on a periodic table:
- Potassium- K- on the left end of period four.
- Oxygen- O- near the right end of periodic two.
Elements on the bottom-left corner of the periodic table are metals. Those on the top-right corner are nonmetals.
- Potassium is a metal,
- Oxygen is a nonmetal.
A metal and a nonmetal combine to form an ionic compound. Potassium oxide is likely to be an ionic compound. It contains two types of ions:
- Potassium ions: Potassium is group 1 of the periodic table. It is an alkaline metal. Like other alkaline metals such as sodium Na, potassium K tends to lose one electron and form ions of charge +1 in compounds. The ion would be K⁺.
- Oxide ions from oxygen: Oxygen is the second most electronegative element on the periodic table. It tends to gain two electrons and form the oxide ion
when it combines with metals.
The two types of ions carry opposite charges. They shall pair up at a certain ratio such that they balance the charge on each other. The charge on each
ion is twice that on a
ion. Each
would pair up with two
. Hence the subscript in the formula:
.
There are two classes of compounds:
- Covalent compounds, which need prefixes, and
- Ionic compounds, which need no prefix.
Prefixes are needed only in covalent compounds. For instance in the covalent compound carbon dioxide
, the prefix di- indicates that there are two oxygen atoms in the formula
. However, there's no need for prefix in ionic compounds such as
.
The masses of CO and CO2 are 90.55g and 100−90.55=9.45 g respectively.
<h3>Total mass.</h3>
Let the mixture has 100g as total mass.
The number of moles of CO is 2890.55=3.234.
The number of moles of CO2 is 449.45=0.215.
The mole fraction of CO is 3.234+0.2153.234=0.938.
The mole fraction of CO2 is 1−0.938=0.062.
The partial pressure of CO is the product of the mole fraction of CO and the total pressure.
It is 0.938×1=0.938 atm.
The partial pressure of carbon dioxide is 0.062×1=0.042 atm.
The expression for the equilibrium constant is:
Kp=PCO2PCO2=0.062(0.938)2=14.19
Δng=2−1=1
Kc=Kp(RT)−Δn=14.19×(0.0821×1127)−1=0.153.
To learn more about equilibrium constant visit the link
brainly.com/question/15118952
#SPJ4
Answer:
a) Attached below
b) The presence of racemic mixture found as product in both cases shows that products are identical ( i.e. they have same configuration
Explanation:
Diagrams of the products obtained from hydroboration-oxidation of cis-2-butene , hydroboration-oxidation of trans-2-butene.
attached below
The presence of racemic mixture found as product in both cases shows that products are identical ( i.e. they have same configuration )