Answer:
0.595 M
Explanation:
The number of moles of water in 1L = 1000g/18g/mol = 55.6 moles of water.
Mole fraction = number of moles of KNO3/number of moles of KNO3 + number of moles of water
0.0194 = x/x + 55.6
0.0194(x + 55.6) = x
0.0194x + 1.08 = x
x - 0.0194x = 1.08
0.9806x= 1.08
x= 1.08/0.9806
x= 1.1 moles of KNO3
Mole fraction of water= 55.6/1.1 + 55.6 = 0.981
If
xA= mole fraction of solvent
xB= mole fraction of solute
nA= number of moles of solvent
nB = number of moles of solute
MA= molar mass of solvent
MB = molar mass of solute
d= density of solution
Molarity = xBd × 1000/xAMA ×xBMB
Molarity= 0.0194 × 1.0627 × 1000/0.981 × 18 × 0.0194×101
Molarity= 20.6/34.6
Molarity of KNO3= 0.595 M
Answer:
It will cost $35.5602
Explanation:
$2.459 /6.5 (mpg) = 0.3783 (cents per mile)
$0.3783 (cost per mile) * 94 (total miles) = $35.5602 total
The Daphne Major is located in the Colon Archipelago. It has a crater composed of volcanic rocks. These rocks are made up from volcanic ashes which hardened over time. The volcano is shaped like a cone which is surrounded by trees and houses several rare birds.
They are isotopes because isotopes have the same number of protons (atomic number) but can have different numbers of neutrons + protons (atomic mass).
<span>The
density of an object is defined to be its mass divided by the volume it
occupies. For this problem, the mass of the cube was given to be 25 g while its
volume is 125 cm</span>³. Thus, we simply divide 25 g by 125 cm³ to get the object’s density. We then calculate that the cube has a density of
0.2 g/ cm³.