Energy and momentum are always conserved. Kinetic energy is not conserved in an inelastic collision though. And that is because it is converted to another form of energy
Answer:
The football leaves with the velocity, u = 15.68 m/s
Explanation:
Given data,
The football bounces back up off the ground and is airborne for, t = 3.2 s
Let the football bounces back up off the ground in the vertical direction
The formula for time of flight is given by,
t = 2u /g
∴ u = gt / 2
Substituting the values,
u = 9.8 x 3.2 / 2
u = 15.68 m/s
Hence, the football leaves with the velocity, u = 15.68 m/s
Answer:
The frictional force acting on the block is 14.8 N.
Explanation:
Given that,
Weight of block = 37 N
Coefficients of static = 0.8
Kinetic friction = 0.4
Tension = 24 N
We need to calculate the maximum friction force
Using formula of friction force

Put the value into the formula


So, the tension must exceeds 29.6 N for the block to move
We need to calculate the frictional force acting on the block
Using formula of frictional force

Put the value in to the formula


Hence, The frictional force acting on the block is 14.8 N.
Answer:
C) No work is required to move the negative charge from point A to point B.
Explanation:
An equipotential surface is defined as a surface connecting all the points at the same potential.
Therefore, when a charge moves along an equipotential surface, it moves between points at same potential.
The work done when moving a charge is given by

where
q is the charge
is the potential difference between the initial and final point of motion of the charge
However, the charge in this problem moves along an equipotential surface: this means that the potential does not change, so

And so, the work done is also zero.