Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:
ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:
r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:
Finally, you obtain for E:
hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C
Answer:
Maximum altitude above the ground = 1,540,224 m = 1540.2 km
Explanation:
Using the equations of motion
u = initial velocity of the projectile = 5.5 km/s = 5500 m/s
v = final velocity of the projectile at maximum height reached = 0 m/s
g = acceleration due to gravity = (GM/R²) (from the gravitational law)
g = (6.674 × 10⁻¹¹ × 5.97 × 10²⁴)/(6370000²)
g = -9.82 m/s² (minus because of the direction in which it is directed)
y = vertical distance covered by the projectile = ?
v² = u² + 2gy
0² = 5500² + 2(-9.82)(y)
19.64y = 5500²
y = 1,540,224 m = 1540.2 km
Hope this Helps!!!
High density
random words to fill up 20 character minimum for answering questions :P
They are unbalanced forces ..... Hope this helps :3
Answer:
Speed of light
Explanation:
The famous Einstein's equation is:
where
E is the energy
m is the mass
is the speed of light
In this equation, Einstein summarized the following fact: mass can be converted into energy, and the amount of energy released in such a process is given by the equation.
An example of application of this equation is the nuclear fusion process. In a nuclear fusion, two lighter nuclei combine into a heavier nucleus. However, the mass of the heavier nucleus is slightly less than the sum of the masses of the two original nuclei: some of the mass of the original nuclei has been converted into energy, accorging to the previous equation.