<span>The electric force between two charged objects depends on
the product of their charges and the distance between them.</span>
Answer:
The initial vertical velocity is zero, u = 0 m/s
Explanation:
Given;
height of the table, h = 0.55 m
horizontal distance traveled by the tennis, x = 0.12 m
Apply the following kinematic equation;
h = ut + ¹/₂gt²
where;
u is the initial vertical velocity = 0, since the tennis ball rolled off the edge of a table.
h = ¹/₂gt²
The time to fall from the vertical height is given by;

The initial horizontal velocity of the tennis is given by;
x = vₓt
vₓ = x / t
vₓ = (0.12) / (0.335)
vₓ = 0.358 m/s
Therefore, the initial vertical velocity is zero, u = 0 m/s and initial horizontal velocity, vₓ is 0.358 m/s
The answer is 60 km. I hope it helps i dont know if this is right or wrong.
Answer:
The rock will reach 9 m from the ground at eaxactly 5.06 s after it was initially thrown upwards.
Explanation:
We will use the equations of motion for this.
u = initial velocity of the rock = 22 m/s
g = acceleration due to gravity = -9.8 m/s²
y = vertical position of the rock at a time t = 9 m
y₀ = initial height of the rock = 25 m
t = time it takes for the rock to reach height of 9 m.
(y-y₀) = ut + 0.5gt²
(9 - 25) = 22t + 0.5(-9.8)t²
- 14 = 22t - 4.9t²
4.9t² - 22t - 14 = 0
solving this quadratic equation,
t = 5.055 s or - 0.565 s
Since time cannot be negative,
t = 5.055 s = 5.06 s
Hope this Helps!!!
If you mean like electromagnetic waves then, Mico waves, UV rays, and infrared waves