To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be


Now the position can be calculated as,

When it has the ground, y=0 and the time is t=4s,


Therefore the cliff was initially to 41.6m from the ground
<span>The egg doesn't break when it hits the sheet because the impact time is longer. Momentum means the egg is slowed rather than coming to an abrubt halt. The softer the object that the egg hits, the longer the time it takes to break. A sheet is so soft that the force is never high enough for the egg to break.</span>
Answer:
A. 40N
B. 5m/s
Explanation:
A.
Impulse is equal to the area under the curve of a force vs. time graph. In this case, the area is in the shape of a triangle with base 8 (12-4=8) and perpendicular height 10:
<em>Area of a triangle = (1/2)bh</em>
A=(1/2)*8*10
=40
ANSWER: 40N
B.
<em>Impulse = mass * velocity</em>
40 = 8v
v = 5
ANSWER: 5m/s