1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
4 years ago
14

Two cars A and B, travel in a straight line. The distance of A from the starting point is given as a function of time by x????(?

???) = ???????? + ???????? 2 with ???? = 2.6 m ???? and ???? = 1.20 m/???? 2 . The distance of B from the starting point is x????(????) = ???????? 2 − ???????? 3 with ???? = 2.80 m/???? 2 and ???? = 0.2 m/???? 3 . [a].Which car is ahead just after they leave the starting point? [b].At what time(s) are the cars at the same point? [c]. At what time(s) is the distance from to neither increasing nor decreasing? [d].At what time(s) do A and B have the same acceleration?
Physics
2 answers:
AysviL [449]4 years ago
6 0

Answer:

the Question is incomplete,the complete question is

"Cars A and B travel in a straight line. The distance of A from the starting point is given as a function of time by xA(t)=αt+βt2, with α=2.60m/s and β=1.20m/s2. The distance of B from the starting point is xB(t)=γt2−δt3, with y=2.80m/s2 and δ=0.20m/s3. (a) Which car is ahead just after the two cars leave the starting point? (b) At what time(s) are the cars at the same point? (c) At what time(s) is the distance from A to B neither increasing nor decreasing? (d) At what time(s) do A and B have the same acceleration?"

a.Car A is ahead after leaving the starting point

b.t=0secs,t=2.27secs and t=5.73secs

c.t=1secs and t=4.33secs

d .t=2.67secs

Explanation:

First we need to write out the giving expressions for the distance from the question

For distance A we have

x_{a}(t)=\alpha t +\beta t^{2}\\

and for distance B we have

x_{b}(t)=\gamma t^{2} -\δt^{3}\\.

a.  Note for us to compare the car that will be ahead we need to determine the initial velocity of each car i.e at t=0.

Since the expression for the velocity is not giving, we apply our knowledge of instantaneous motion which involves us differentiating the distance in order to get the velocity.

V=\frac{dx}{dt} \\

and recall  that for y=ax^{n} \\\frac{dy}{dx}=a*nx^{n-1}  \\

for velocity of car  A, we have

v_{a}=\frac{d(\alpha t +\beta t^{2})}{dt}\\v_{a}=\alpha +2\beta t\\

we substitute t=o

v_{a}=\alpha \\\\v_{a}=2.6m/s

for velocity of car  B, we have

v_{b}=\frac{d(\gamma  t^{2} -\delta t^{3})}{dt}\\v_{b}= 2\gamma t  -3\delta t^{2}\\

at t=0

v_{b}=0

in conclusion, since the initial velocity of car An is greater than that of car B, Car A is ahead after leaving the starting point

b. for the time at which the cars are the same point, we need to find the time at which the cars have equal position. this can be done by  equating the position of both cars i.e

x_{a}(t)=x_{b}(t)\\  \alpha t +\beta t^{2}=\gamma t^{2} -\δt^{3}\\

if we carry out simply arithmetic, we arrive at

\delta t^{2}+(\beta -\gamma)t +\alpha =0\\

applying quadratic formula, we determine the value of t to be

t=2.27secs \\t=5.73secs\\

also note that at the starting point before the two cares take-off they are also at the same position i.e at t=0 hence the time which the cars are at the same point are

t=0secs\\t=2.27secs \\t=5.73secs\\

c. the distance will be constant when the two cars move at the same velocity i.e

v_{a}=v_{b} \\

\alpha +2\beta t=2\gamma t -3\delta t^{2}\\

if we rearrange the equation and substitute the value of the constants, we arrive at

0.6t^{2} -3.2t +2.6=0\\

Solving the simple quadratic equation, we arrive at the values of t which are

t=1secs\\t=4.33secs\\

d. To determine the time at which the two cars will have the same acceleration, we need to determine the expression for the acceleration which we can get by differentiating the the velocity for each car

a_{a}(t)=\frac{d(\alpha +2\beta t) }{dt}\\ a_{a}(t)=2\beta \\

and for car B we have the acceleration to be

a_{b}(t)=\frac{d(2\gamma t - 3\delta t^{2})}{dt}\\ a_{b}(t)=2\gamma -6\delta t\\

Hence to have the same acceleration

a_{a}(t)=a_{b}(t)\\2\beta=2\gamma -6\delta t\\

Making t the subject of formula,

t=\frac{\gamma - \beta}{3\delta}\\t=\frac{2.8-1.3}{3*0.2}\\ t=2.67secs\\

Hence the cars will have the same acceleration at t=2.67secs

Norma-Jean [14]4 years ago
3 0

Answer:

a) They are in the same point

b) t = 0 s, t = 2.27 s, t = 5.73 s

c) t = 1 s, t = 4.33 s

d) t = 2.67 s

Explanation:

Given equations are:

x_{a}(t) = at+bt^2

x_{b}(t) = ct^2-dt^3

Constants are:

a = 2.60 m/s, b = 1.20 m/s^2, c= 2.80 m/s^2, d = 0.20 m/s^3

a) "Just after leaving the starting point" means that t = 0. So, if we look the equations, both x_a(t) and x_b(t) depend on t and don't have constant terms.

So both cars A and B are in the same point.

b) Firstly, they are in the same point in x = 0 at t = 0. But for generalized case, we must equalize equations and solve quadratic equation where roots will give us proper t value(s).

at+bt^2 = ct^2-dt^3

2.6t + 1.2t^2 = 2.8t^2 - 0.2t^3\\0.2t^2 - 1.6t + 2.6 = 0\\t^2 - 8t + 13 = 0

t_1 = 4 - \sqrt{3} = 2.27 s, t_1 = 4 + \sqrt{3} = 5.73 s

c) Since the distance isn't changing, the velocities are equal. To find velocities, we need to take the derivatives of both equations with respect to time and equalize them.

v_a(t) = \frac{d}{d(t)}x_a(t) = a + 2bt \\v_b(t) = \frac{d}{d(t)}x_b(t) = 2ct - 3dt^2\\a+2bt = 2ct - 3dt^2\\3dt^2+2(b-c)t+a = 0\\0.6t^2-3.2t+2.6 = 0

t_1 = 1 s, t_2 = 4.33 s

d) For same acceleration, we we need to take the derivatives of velocity equations with respect to time and equalize them.

a_a(t) = \frac{d}{d(t)}v_a(t) = 2b \\a_b(t) = \frac{d}{d(t)}v_b(t) = 2c - 6dt\\2b = 2c - 6dt\\3dt = c - b\\t = (c - b)/3d = (2.8 - 1.2)/(3*0.2) = 2.67 s

You might be interested in
Study the image of earths layer which statement correctly compares the thicknesses of earths layers
My name is Ann [436]

This question is incomplete because the options are missing; here is the complete question:

Study the image of the Earth's layer which statement correctly compares the thicknesses of earths layers

A. Earth’s mantle is thinner than its oceanic crust.

B. Earth’s outer core is thicker than its mantle.

C. Earth’s continental crust is thicker than its lithosphere.

D. Earth’s lithosphere is thinner than its asthenosphere.

The answer to this question is D. Earth’s lithosphere is thinner than its asthenosphere.

Explanation:

The image shows the different layers that are part of Earth, as well as the thickness of each layer, in kilometers. In this, the thickest layer is the Mantle that is almost 2900 kilometers; this is followed in thickness by the outer and the inner core.

Additionally, other layers such as the continental/oceanic crust, the asthenosphere, and the lithosphere that are near the surface are thinner. About this, it can be concluded the lithosphere is thinner than the asthenosphere because the lithosphere has a thickness of 100 km, while the asthenosphere thickness is 660km. This makes option D the correct.

4 0
3 years ago
A 5-kg ball collides inelastically head-on with a 10-kg ball, which is initially stationary. Which of the following statements i
Veseljchak [2.6K]

a. The magnitude of the change of the momentum of the 5-kg ball is equal to the magnitude of the change of momentum of the 10-kg ball.

c. The magnitude of the change of velocity the 5-kg ball experiences is greater than that of the 10-kg ball.

Explanation:

For an inelastic collision:

  • The total momentum of the system is conserved
  • The total kinetic energy of the system is not conserved

Using these facts, let's now analyze each statement given.

a. The magnitude of the change of the momentum of the 5-kg ball is equal to the magnitude of the change of momentum of the 10-kg ball.  --> TRUE. Since the total momentum is conserved, we can write:

p_1 = p_1'+p_2'

where

p_1 is the initial momentum of the 5-kg ball

p_1' is the final momentum of the 5-kg ball

p_2' is the final momentum of the 10-kg ball

The equation can be rewritten as

p_1-p_1'=p_2'

which is equivalent to

-\Delta p_1 = \Delta p_2

which means that the magnitude of the change of momentum of the two balls is the same.

b. Both balls lose all their momentum since the collision is inelastic.  --> FALSE, the 10-kg ball gains momentum, so it does not lose it.

c. The magnitude of the change of velocity the 5-kg ball experiences is greater than that of the 10-kg ball.  --> TRUE. We already said that the magnitude of the change in momentum of the two balls is the same. However, it can be written as

\Delta p = m\Delta v

where m is the mass of the ball and \Delta v its change in velocity. Therefore, the 5-kg ball (which has smaller mass) will have a larger \Delta v, so a larger change in velocity.

d. The magnitude of the change of velocity the 5-kg ball experiences is equal to that of the 10-kg ball.  --> FALSE, as we discussed in c).

e. The magnitude of the change of velocity the 5-kg ball experiences is less than that of the 10-kg ball. --> FALSE, as we discussed in c).

Learn more about change in momentum:

brainly.com/question/9484203

#LearnwithBrainly

6 0
3 years ago
Conductivities are often measured by comparing the resistance of a cell filled with the sample to its resistance when filled wit
Bezzdna [24]

Answer:

1200 Sm^2mol^-1

Explanation:

Given data :

conductivity of water ( kwater ) = 76 mS m^-1 = 0.076 Sm^-1

conductivity of kcl (aq)( Kkcl ) = 1.1639 Sm^-1

Kkcl = 1.1639 - 0.076 = 1.0879  Sm^-1

Resistance = 33.21 Ω

where conductivity can be expressed as = \frac{Cell constant}{Resistance }

hence cell constant = conductivity * Resistance

                                 = 1.0879 * 33.21 = 36.13m^-1

conductivity of  CH3COOH ( kCH3COOH ) =  36.13 / 300

                                                                       = 0.120 Sm^-1

<u>Determine the molar conductivity of acetic acid</u>

= ( kCH3COOH * 1000 ) / C

C = 0.1 mol dm

=  (0.120 * 1000) / 0.1  =  1200 Sm^2mol^-1

3 0
3 years ago
Kon'nichiwa~<br>please help me with this question!!​
andrezito [222]

Let's check the relationship

\\ \rm\hookrightarrow g=\dfrac{GM}{r^2}

\\ \rm\hookrightarrow g\propto G

So

  • Raindrops will fall faster . .
  • Also walking on ground would become more difficult as g increases.

Option C is wrong by now .Let's check D once

\\ \rm\hookrightarrow T\propto \dfrac{1}{\sqrt{g}}

  • So time period of simple pendulum would decrease.

4 0
2 years ago
Hanging from a horizontal beam are nine simple pendulums of the following lengths:
LenaWriter [7]

Answer:

Options d and e

Explanation:

The pendulum which will be set in motion are those which their natural frequency is equal to the frequency of oscillation of the beam.

We can get the length of the pendulums likely to oscillate with the formula;

L =\frac{g}{w^{2} }

where g=9.8m/s

         ω= 2rad/s to 4rad/sec

when ω= 2rad/sec

L= \frac{9.8}{2^{2} }

L = 2.45m

when  ω= 4rad/sec

L=\frac{9.8}{4^{2} }

L = 9.8/16

L=0.6125m

L is between 0.6125m and 2.45m.

This means only pendulum lengths in this range will oscillate.Therefore pendulums with length 0.8m and 1.2m will be strongly set in motion.

Have a great day ahead

8 0
4 years ago
Other questions:
  • Hydraulic systems utilize Pascal's principle by transmitting pressure from one cylinder (called the primary) to another (called
    10·1 answer
  • What is the relative humidity when the dry-bulb temperature is 16°c and the wet-bulb temperature is 14°c?
    13·1 answer
  • How much bigger is the diameter of the earth compared to pluto?
    9·1 answer
  • A bullet with a mass of 4.5 g is moving with a speed of 300 m/s (with respect to the ground) when it collides with a rod with a
    12·1 answer
  • The distance from the peak to a peak of a successive wave.
    6·1 answer
  • A police car travels towards a stationary observer at a speed of 15m/s. the siren on the car emits a sound of frequency 250Hz. C
    9·1 answer
  • A sample of O2 occupies 75 L at 1 atm. If the volume of the
    6·1 answer
  • Which combinations of forces would best move a large, heavy box across a room? Choose the three statements that apply.
    11·1 answer
  • Which of the following statements are true?
    14·2 answers
  • If the electric field is 100N/C at a distance of 50 cm from a point charge , what is the value of ?.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!