Thus problem is providing us with the mass of iron (III) oxide as 12.4 g so the moles are required and found to be 0.0776 mol after the calculations:
<h3>Mole-mass relationships:</h3>
In chemistry, we use mole-mass relationships in order to calculate grams from moles and vice versa. In this case, since we are given the mass of iron (III) oxide as 12.4 g one can calculate the moles by firstly quantifying its molar mass:

Then, we prepare a conversion factor in order to cancel out the grams and thus, get moles:

Learn more about mole-mass relationships: brainly.com/question/18311376
Answer:
The answer is 10 degrees celsius
Explanation:
Answer:
-145.2kJ
Explanation:
Enthalpy is an extensive property as its value depends on the amount of substance present in the system.
If the enthalpy for one mole of methanol = -726 kJ/mol;
The Enthalpy for 0.2 mol is given as;
Enthalpy = 0.200 * 726
Enthalpy = -145.2kJ
It would take -145.2kJ for 0.200 mol of methanol to undego the combustion reaction.
Magnesium oxide can be very bad for your health, and when we did an experiment with it in class it was white because it was so hot. It is very flammable.