Answer:
0.250 moles of MgO are produced when 0.250 mol of Mg reacts completely with O₂
Explanation:
In first place, the balanced reaction between Mg and O₂ is:
2 Mg + O₂ ⇒ 2 MgO
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reactants and products participate in the reaction:
- Mg: 2 moles
- O₂: 1 mole
- MgO: 2 moles
Then you can apply the following rule of three: if by reaction stoichiometry 2 moles of Mg produce 2 moles of MgO, 0.250 moles of Mg, how many moles of MgO will they form?

moles of MgO= 0.250
<u><em>0.250 moles of MgO are produced when 0.250 mol of Mg reacts completely with O₂</em></u>
Weathering and erosion produce ever smaller rock particles which,
when mixed with dust and decayed organic matter over time ,
result in different types of soil .
[hope this helps]
Answer:
3AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
The coefficients are 3, 1, 3, 1
Explanation:
From the question given above, the following data were:
Silver chloride reacts with sodium phosphate to yield sodium chloride and silver phosphate. This can be written as follow:
AgCl + Na₃PO₄ —> NaCl + Ag₃PO₄
The above equation can be balanced as follow:
AgCl + Na₃PO₄ —> NaCl + Ag₃PO₄
There are 3 atoms of Na on the left side and 1 atom on the right side. It can be balance by putting 3 in front of NaCl as shown below:
AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
There are 3 atoms of Cl on the right side and 1 atom on the left. It can be balance by putting 3 in front of AgCl as shown below:
3AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
Thus, the equation is balanced.
The coefficients are 3, 1, 3, 1
Answer:
c. a phosphodiester bond between the 3' and 5' hydroxyl groups of neighboring sugars
Explanation:
Phosphodiester bond is the bond which is formed between the hydroxyl group of one nucleotide to the phosphate group of the another nucleotide. These are ester bonds. These bonds are central to all the life which is in existence on Earth. These bonds forms the backbone of the strands of the nucleic acid.
The bond is formed by the linkage of 3' carbon atom of one of the sugar unit to the 5' carbon atom of the another succeeding sugar unit.
<u>Hence, the answer is:- c. a phosphodiester bond between the 3' and 5' hydroxyl groups of neighboring sugars</u>