Answer:
Simple awnser Do it yourself I really would help but I have no clue! Sorry
Explanation:
Answer:
a. The station is rotating at 
b. the rotation needed is 
Explanation:
We know that the centripetal acceleration is

where
is the rotational speed and r is the radius. As the centripetal acceleration is feel like an centrifugal acceleration in the rotating frame of reference (be careful, as the rotating frame of reference is <u>NOT INERTIAL,</u> the centrifugal force is a fictitious force, the real force is the centripetal).
<h3>a. </h3>
The rotational speed is :




Knowing that there are
in a revolution and 60 seconds in a minute.


<h3>b. </h3>
The rotational speed needed is :




Knowing that there are
in a revolution and 60 seconds in a minute.


Answer:
52.9 N, 364.7 N
Explanation:
First of all, we need to resolve both forces along the x- and y- direction. We have:
- Force A (178 N)

- Force B (259 N)

So the x- and y- component of the total force acting on the block are:

Answer:
Option (C)
Explanation:
The nuclear energy is defined as a type of energy which liberates either by the process of nuclear fusion or nuclear fission and is mainly used to generate electricity. This energy is stored in the core of an atom (or nucleus).
It is highly effective, cost-effective and there is no emission of greenhouse gases.
But it also has some disadvantages, of which one is that it produces radioactive waste materials, which are difficult to dispose these substances and is also a very expensive method. These materials emit radiations that are harmful to the organisms. So, it is very challenging to dispose these radioactive waste materials.
Thus, the correct answer is option (C).