-- pass the light through a lens
The path of the light is bent (refracted) to a new direction.
-- bounce the light off a shiny surface
The light is sent back (reflected) in the direction from which it arrived.
-- pass the light through a prism
The light is spread out according to the different wavelengths
that may be in it.
-- put something black in the light's path
The light is completely absorbed and is never seen again.
-- turn the light off
The source stops emitting light.
-- throw a towel over the lamp
The light is absorbed in the towel, and not seen outside of it.
Answer:
the higher the ramp the less distance it will travel
The AMOUNT of energy the ball has doesn't change. It's 294 joules in Darwin's hand, and it's still 294 joules when the ball hits the ground. It's all PE before he let's it go, and it steadily changes from PE to KE all the way down.
It BEGINS to turn into KE immediately, when Darwin lets go of the ball, and it starts to fall.
More and more PE turns into KE as the ball falls, all the way down.
When the ball hits the ground, it has no more PE left. All of its mechanical energy is then KE.
Answer
Together with glycolysis, The Krebs cycle, and the electron transport chain release about 36 molecules of ATP per molecule of glucose.The Krebs cycle uses the two molecules of pyruvic acid formed in glycolysis and yields high-energy molecules of NADH and flavin adenine dinucleotide (FADH2), as well as some ATP. The electron transport chain forms a proton gradient across the inner mitochondrial membrane, which drives the synthesis of ATP