Answer:
Increase in temperature = 269.54 °C
Explanation:
We have equation for thermal expansion
ΔL = LαΔT
Change in length, ΔL = 0.08 m
Length, L = 56 m
Coefficient of thermal expansion, α = 5.3 x 10⁻⁶ °C⁻1
Change in temperature, ΔT = T - 253
Substituting
0.08 = 56 x 5.3 x 10⁻⁶ x (T - 253)
(T - 253) = 269.54
T = 522.54 °C
Increase in temperature = 269.54 °C
Answer:
r=P/C, where P is the amount of useful output ("product") produced per the amount C ("cost") of resources consumed.
Explanation:
Efficiency is often measured as the ratio of useful output to total input, which can be expressed with the mathematical formula r=P/C, where P is the amount of useful output ("product") produced per the amount C ("cost") of resources consumed.
Answer:
6s
Explanation:
Assume it is dropped from rest and the gravitational acceleration is 10
By the equation of motion under constant acceleration:

180 = (0)t+10(t^2)/2
t = 6 or -6 (rejected)
t = 6 s