Answer:
B. 
Explanation:
Assuming we are dealing with a perfect gas, we should use the perfect gas equation:

With T the temperature, V the volume, P the pressure, R the perfect gas constant and n the number of mol, we are going to use the subscripts i for the initial state when the gas has 20 cubic inches of volume and absolute pressure of 5 psi, and final state when the gas reaches 10 psi, so we have two equations:
(1)
(2)
Assuming the temperature and the number of moles remain constant (number of moles remain constant if we don't have a leak of gas) we should equate equations (1) and (2) because
,
and R is an universal constant:
, solving for 


Explanation:
speed of wave
v = wavelength x frequency
since frequency is f = 1/Period then
v = wavelength : Period
v = 10 cm/ 0.2 s = 50 cm/s
v = 0.5 m/s
Mechanical energy = potential energy + kinetic energy
The ball is on the ground so it has no potential energy. that's all i know.
In fact, the force Rahul exerts on Earth corresponds to the force of gravity. But Rahul's weight is, in fact, the force of gravity exerted by the Earth on Rahul, and these two forces correspond to the action-reaction pair of Newton's third law, which states that the two forces are equal.