1. Define <em>Viscosity</em>
In physics, <em>Viscosity</em> refers to the level of resistance of a fluid to flow due to internal friction, in other words, viscosity is the result of the magnitude of internal friction in a fluid, as measured by the force per unit area resisting uniform flow. For example, the honey is a fluid with high viscosity while the water has low viscosity.
What are the main differences between viscous and inviscid flows?
Viscous flows are flows that has a thick, sticky consistency between solid and liquid, contain and conduct heat, does not have a rest frame mass density and whose motion at a fixed point always remains constant. Inviscid flows, on the other hand, are flows characterized for having zero viscosity (it does not have a thick, sticky consistency), for not containing or conducting heat, for the lack of steady flow and for having a rest frame mass density
Furthermore, viscous flows are much more common than inviscid flows, while this latter is often considered an idealized model since helium is the only fluid that can become inviscid.
Answer:
For the two you haven't answered: (Drag greater than thrust, lift greater than weight) It will accelerate backwards (decelerate) and upwards
(Lift greater than weight, thrust greater than drag) accelerate upwards and forwards.
Answer:
I. Tension (cable A) ≈ 6939 lbf
II. Tension (cable B) ≈ 17199 lbf
Explanation:
Let's begin by listing out the data that we were given:
mass of beam (m) = 570 lb, deceleration (cable A) = -20 ft/s², deceleration (cable B) = -2 ft/s²,
g = 32.17405 ft/s²
The tension on an object is given by the product of mass of the object by gravitational force plus/minus the product of mass by acceleration.
Mathematically represented thus:
T = mg + ma
where:
T = tension, m = mass, g = gravitational force,
a = acceleration
I. For Cable A, we have:
T = mg + ma = (570 * 32.17405) + [570 * (-20)]
T = 18339.2085 - 11400 = 6939.2085
T ≈ 6939 lbf
II. For Cable B, we have:
T = mg + ma = (570 * 32.17405) + [570 * (-2)]
T = 18339.2085 - 1140 = 17199.2085
T ≈ 17199 lbf
Answer:
COP of the heat pump is 3.013
OP of the cycle is 1.124
Explanation:
W = Q₂ - Q₁
Given
a)
Q₂ = Q₁ + W
= 15 + 7.45
= 22.45 kw
COP = Q₂ / W = 22.45 / 7.45 = 3.013
b)
Q₂ = 15 x 1.055 = 15.825 kw
therefore,
Q₁ = Q₂ - W
Q₁ = 15.825 - 7.45 = 8.375
∴ COP = Q₁ / W = 8.375 / 7.45 = 1.124