1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrrafil [7]
3 years ago
14

The following laboratory test results for Atterberg limits and sieve-analysis were obtained for an inorganic soil. [6 points] Si

eve analysis Sieve Size No. 4 (4.75 mm) No. 10 (2.00 mm) No. 40 (0.425 mm) No. 200 (0.075 mm) Percent passing by weight 80 60 30 10 Atterberg limits Liquid limit (LL) Plastic limit (PL 31 25
(a) Classify this soil according to USCS system, providing the group symbol for it. Show how you arrive at the final classification.
(b) According to USCS system, what is a group name for this soil?
(c) Is this a clean sand? If not, explain why.
Engineering
1 answer:
alexira [117]3 years ago
5 0

Answer: hello the complete question is attached below

answer:

A) Group symbol = SW

B) Group name = well graded sand , fine to coarse sand

C) It is not a clean sand given that ≤ 50% particles are retained on No 200

Explanation:

<u>A) Classifying the soil according to USCS system</u>

 ( using 2nd image attached below )

<em>description of sand</em> :

The soil is a coarse sand since  ≤ 50% particles are retained on No 200 sieve, also

The soil is a sand given that more than 50% particles passed from No 4 sieve

The soil can be a clean sand given that fines ≤ 12%

The soil can be said to be a well graded sand because the percentage of particles passing through decreases gradually over time

Group symbol as per the 2nd image attached below = SW

B) Group name = well graded sand , fine to coarse sand

C) It is not a clean sand given that ≤ 50% particles are retained on No 200

You might be interested in
A steel rule can be used to check for
MAXImum [283]
I THINK THE ANSWER IS B BUT IM NOT SURE OK BYE
3 0
3 years ago
Consider an infinitely thin flat plate of chord c at an angle of attack α in a supersonic flow. The pressure on the upper and lo
amm1812

Answer:

X_cp = c/2

Explanation:

We are given;

Chord = c

Angle of attack = α

p u (s) = c 1

​p1(s)=c2,

and c2 > c1

First of all, we need to find the resultant normal force on the plate and the total moment about leading edge.

I've attached the solution

4 0
3 years ago
A 30 mm thick AISI 1020 steel plate is sandwiched between two 10 mm thick 2024-T3 aluminum plates and compressed with a bolt and
denis-greek [22]

Answer:

275 MPa

Explanation:

Regardless of what it is holding, the stiffness of a bolt depends on its own material properties and geometry.

The stiffness is:

k = E * \frac{A}{l}

I assume this one is made of steel, because regular bolts are steel.

The Young's modulus for steel is E = 210 GPa

The longitude is given. (But note that in a real application you have to consider the length up to the nut.)

The section is (using the nominal diameter of 10 mm)

A = \frac{\pi * d^2}{4} = \frac{\pi * 0.01^2}{4} = 7.85e-5 m^2

Then:

k  = 2.1e11 * \frac{7.85e-5}{0.06} = 275e6 Pa = 275 MPa

5 0
3 years ago
Engine oil (unused) flows at 1.81 x 10^-3 kg/s inside a 1-cm diameter tube that is heated electrically at a rate of 76 W/m. At a
Ann [662]

Answer:

(a)Tb = 330.12 K (b)Tc =304.73 K (c)19.81 K/m (d) h =60.65 W/m². K

Explanation:

Solution

Given that:

The mass flow rate of engine oil m = 1.81 x 10^-3 kg/s

Diameter of the tube, D = 1cm =0.01 m

Electrical heat rate, q =76 W/m

Wall Temperature, Ts = 370 K

Now,

From the properties table of engine oil we can deduce as follows:

thermal conductivity, k =0.139 W/m .K

Density, ρ = 854 kg/m³

Specific heat, cp = 2120 J/kg.K

(a) Thus

The wall heat flux is given as follows:

qs = q/πD

=76/π *0.01

= 2419.16 W/m²

Now

The oil mean temperature is given as follows:

Tb =Ts -11/24 (q.R/k) (R =D/2=0.01/2 = 0.005 m)

Tb =370 - 11/24 * (2419.16 * 0.005/0.139)

Tb = 330.12 K

(b) The center line temperature is given below:

Tc =Ts - 3/4 (qs.R/k)= 370 - 3/4 * ( 2419.16 * 0.005/0.139)

Tc =304.73 K

(c) The flow velocity is given as follows:

V = m/ρ (πR²)

Now,

The The axial gradient of the mean temperature is given below:

dTb/dx = 2 *qs/ρ *V*cp * R

=2 *qs/ρ*[m/ρ (πR²) *cp * R

=2 *qs/[m/(πR)*cp

dTb/dx = 2 * 2419.16/[1.81 x 10^-3/(π * 0.005)]* 2120

dTb/dx = 19.81 K/m

(d) The heat transfer coefficient is given below:

h =48/11 (k/D)

=48/11 (0.139/0.01)

h =60.65 W/m². K

8 0
3 years ago
A closed system consists of 0.3 kmol of octane occupying a volume of 5 m³. Determine (a) the weight of the system, in N, and (b)
Leni [432]

Answer:

a) m=336.18N

b) Vn=16.67m/kmol

Vm=0.1459m^3/kg

Explanation:

To calculate the mass of the octane(m):

Number of mole of octane (n) =0.3kmol(given)

Molarmass of octane (M) =114.23kg/kmol

m=n*M

m=(0.3kmol)*(114.23kg/kmol)

m=34.269kg

To calculate for the weight of octane(W):

W=g*m

W=(9.81m/s^2)*(34.269kg)

W=336.18N

b) For specific volumes of Vn and Vm:

Given volume of octane (V) =5m^3

Vm=V/m

Vm=5m^3/34.269kg

Vm=0.1459m^3/kg

And Vn will be :

Vn=V/m=5m^3/0.3kmol

Vn=16.67m/Kmol

Therefore, the answers are:

a) m=336.18N

b) Vn=16.67m/kmol

Vm=0.1459m^3/kg

7 0
3 years ago
Other questions:
  • The voltage across a device and the current through it are:
    9·2 answers
  • can someone help me with this engineering mechanics homework, please? I tried to solve it, but I got so confused.​
    5·1 answer
  • R 134a enters a air to fluid heat exchanger at 700 kPa and 50 oC. Air is circulated into the heat exchanger to cool the R134a to
    6·1 answer
  • According to the video, what are some of the effects of the increase in the use of automated tools for Loading Machine Operators
    10·2 answers
  • 2. Why are some constraints automatically applied by the software, but you must manually apply others?
    7·1 answer
  • A bar of steel has the minimum properties Se = 40 kpsi, S = 60 kpsi, and S-80 kpsi. The bar is subjected to a steady torsional s
    6·1 answer
  • An inventor claims to have invented a heat engine that operates between the temperatures of 627°C and 27°C with a thermal effici
    5·1 answer
  • Which of the following sentences uses the word malleable correctly?
    7·2 answers
  • Airbags will deploy in a head on collision but not in a collision that occurs from angle
    13·1 answer
  • Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!