50 g of liquid X at 10 Celcius and 200 g of liquid Y
mx*cx*(t-tx)+my*cy*(t-ty)=0
cx/cy = - my*(t-ty) : mx*(t-tx) = (my/mx) * (ty - t) / (t-tx)
cx/cy = 200/50*(40-15)/(15-10) = 20
cx/cy = 20
its because it allows modern astronomers the ability to see farther out and more accuratly
True. If something is thermal, that means that by getting to close to it, you could get burned.
The relationship between the frequency and wavelength of a wave is given by the equation:
v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency.
If we divide the equation by f we get:
λ=v/f
From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases.
So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.
Answer:
Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.
Explanation:
The corrosion rate is the rate of material remove.The formula for calculating CPR or corrosion penetration rate is

K= constant depends on the system of units used.
W= weight =485 g
D= density =7.9 g/cm³
A = exposed specimen area =100 in² =6.452 cm²
K=534 to give CPR in mpy
K=87.6 to give CPR in mm/yr
mpy


=37.4mpy
mm/yr


=0.952 mm/yr
Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.