If electromagnetic radiation acted like particles in the double-slit experiment, we would observe one bright band would appear in the center of the screen.
<h3>Bahavior of particles in double-slit experiment</h3>
In a double-slit experiment, single particles, such as photons, pass one at a time through a screen containing two slits.
The photons behave like wave and the constructive interfernce of the waves of these photons will generate a high amplitude wave seen as a bright band in the center of the screen.
Thus, if electromagnetic radiation acted like particles in the double-slit experiment, we would observe one bright band would appear in the center of the screen.
Learn more about double slit experiment here: brainly.com/question/4449144
Explanation:
Let
= distance traveled while accelerating
= distance traveled while decelerating
The distance traveled while accelerating is given by



We need the velocity of the rocket after 30 seconds and we can calculate it as follows:

This will be the initial velocity when start calculating for the distance it traveled while decelerating.


Solving for
we get


Therefore, the total distance x is


Answer:

Explanation:
When wings of the airplane makes an angle of 40 degree with the horizontal so here we can say that force due to air is having two components


now we know that


also we know that


now plug in all data in above equations




The compression curve would be theoretically given for a system of bodies in which the spring applies the force (Although in the same way the following process can be extrapolated to any system, depending on the type of Force to consider) For a spring mass system, the strength is given by Hooke's law as

Where,
K = Spring constant
x = Displacement
If we integrate based on distance we would have

This integral represents the area under the Force Curve based on each distance segment traveled.



This is the same formula that represents the elastic potential energy of a body. Therefore the correct answer is D.
Use Newton's second law and the free body diagram to determine the net force and acceleration of an object. In this unit, the forces acting on the object were always directed in one dimension.
The object may have been subjected to both horizontal and vertical forces but there was no single force directed both horizontally and vertically. Moreover, when free-body diagram analysis was performed, the net force was either horizontal or vertical, never both horizontal and vertical.
Times have changed and we are ready for situations involving two-dimensional forces. In this unit, we explore the effects of forces acting at an angle to the horizontal. This makes the force act in two dimensions, horizontal and vertical. In such situations, as always in situations involving one-dimensional network forces, Newton's second law applies.
Learn more about Newton's second law here:-brainly.com/question/25545050
#SPJ9