A distance of d is covered with 53 mile/hr initially.
Time taken to cover this distance t1 = d/53 hour
Next distance of d is covered with x mile hours.
Time taken to cover this distance t2 = d/x hours.
We have average speed = 26.5 mile / hour
= Total distance traveled/ total time taken
=
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
<h2>Answers:</h2><h2 /><h2>a) Arrow B</h2><h2>b) Arrow E</h2>
Explanation:
Refraction is a phenomenon in which a wave (the light in this case) bends or changes its direction <u>when passing through a medium with a refractive index different from the other medium.</u> Where the Refractive index is a number that describes how fast light propagates through a medium or material.
According to this, if we observe the rays A an D passing throgh the biconcave lens, we will have two mediums:
1) The air
2)The material of the biconcave lens
This two mediums have different refractive indexes, hence the rays will change the direction.
-For the incident ray A, the corresponding refractive ray is B, because is the ray that bends after passing throgh the lens
-For the incident ray D, the refracted ray is E following the same principle.
Answer:Let m = mass of asteroid y.Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.Given:F = 6.2x10⁸ Nd = 2100 km = 2.1x10⁶ mNote thatG = 6.67408x10⁻¹¹ m³/(kg-s²)The gravitational force between the asteroids isF = (G*m*(m/3))/d² = (Gm²)/(3d²)orm² = (3Fd²)/G = [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²)) = 1.229x10³² kg²m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)Answer: 1.1x10¹⁶ kg
Explanation: