Answer:
V₂ ≈416.7 mL
Explanation:
This question asks us to find the volume, given another volume and 2 temperatures in Kelvin. Based on this information, we must be using Charles's Law and the formula. Remember, his law states the volume of a gas is proportional to the temperature.
where V₁ and V₂ are the first and second volumes, and T₁ and T₂ are the first and second temperature.
The balloon has a volume of 600 milliliters and a temperature of 360 K, but the temperature then drops to 250 K. So,
- V₁= 600 mL
- T₁= 360 K
- T₂= 250 K
Substitute the values into the formula.
- 600 mL /360 K = V₂ / 250 K
Since we are solving for the second volume when the temperature is 250 K, we have to isolate the variable V₂. It is being divided by 250 K. The inverse o division is multiplication, so we multiply both sides by 250 K.
- 250 K * 600 mL /360 K = V₂ / 250 K * 250 K
- 250 K * 600 mL/360 K = V₂
The units of Kelvin cancel, so we are left with the units of mL.
- 250 * 600 mL/360=V₂
- 416.666666667 mL= V₂
Let's round to the nearest tenth. The 6 in the hundredth place tells us to round to 6 to a 7.
The volume of the balloon at 250 K is approximately 416.7 milliliters.
The number of atoms present, on average, will be the natural abundance of the isotope times the number of atoms in the sample => number of C-13 atoms = C-13 abundance * number of atoms in the sample = 1.07% * 30,000 = 1.07 * 30,000 / 100 = 321 atoms.<span> Answer: 321 atoms.</span>
Answer:
4 moles
Explanation:
=
= 2 (moles)
CH4 + 2O2 → CO2 + 2H2O
1 : 2 : 1 : 2
2 (moles)
⇒
= 2 × 2 ÷ 1 = 4 (moles)
Answer:
eukaryotic because it has a nucleus
Explanation: