1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
finlep [7]
3 years ago
12

A book is launched up along the rough incline. Kinetic energy given to a book at initial point is 100 J. Book comes to stop at s

ome point having potential energy 80 J, after what book starts to slide back. What will be its kinetic energy when it will return to the initial launching point?
(A) 60 J
(B) 100 J
(C) 80J
(D) 180 J
Physics
1 answer:
den301095 [7]3 years ago
7 0

Answer:

(A) 60 J

Explanation:

At state 1

KE₁=100 J

At state 2

KE₂ = 0

U₂=80 J

Given that surface is rough so friction force will act in opposite to the direction of motion

Lets take work done by friction = Wfr

From work power energy

Work done by all forces = Change in kinetic energy

Wfr + U₂=ΔKE

Wfr+80 = 100

Wfr= 20 J

Now when book slides from top position then

Wfr+ U = KEf - KEi

-20 + 80 = KEf-0

KEf= 60 J

(A) 60 J

You might be interested in
A car starts from rest and after 7 seconds it is moving at 42 m/s. What is the car’s average acceleration? A. 0.17 m/s2 B. 1.67
aliya0001 [1]
Acceleration =velocity /time
=42/7
=6
5 0
3 years ago
Read 2 more answers
In classical physics, consider a 2 kg block hanging on a spring with a spring constant of 50 N/m. Ignore air resistance. The blo
RUDIKE [14]

Answer:

v = 0

Explanation:

This problem can be solved by taking into account:

- The equation for the calculation of the period in a spring-masss system

T = \sqrt{\frac{m}{k} }     ( 1 )

- The equation for the velocity of a simple harmonic motion

x = \frac{2\pi }{T}Asin(\frac{2\pi }{T}t)   ( 2 )

where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block

Hence

T = \sqrt{\frac{2 kg}{50 N/m}} = 0.2 s

and by reeplacing it in ( 2 ):

v = \frac{2\pi }{0.2s}(14cm)sin(\frac{2\pi }{0.2s}(0.9s)) = 140\pi  sin(9\pi ) = 0

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.

5 0
3 years ago
1. Space probes have not landed on Pluto yet. Describe three types of information you would collect if you were designing the pr
konstantin123 [22]

Answer:

Space probes are made to conduct science experiments. They do not have people on them. Space probes have helped scientists get information about our solar system. Most probes are not designed to return to Earth. Some have landed on other planets! Others have flown past the planets and taken pictures of them for scientists to see. There are even some space probes that go into orbit around other planets and study them for a long time. The information they gather is used to help us understand the weather and other changes which happen on planets other than the Earth. This information is important in helping to plan other space missions such as ones to Mars and to Saturn.

Explanation:

7 0
2 years ago
When the play button is pressed, a CD accelerates uniformly from rest to 450 rev/min in 3.0 revolutions. If the CD has a radius
Marina CMI [18]

To solve this problem it is necessary to apply the kinematic equations of angular motion.

Torque from the rotational movement is defined as

\tau = I\alpha

where

I = Moment of inertia \rightarrow \frac{1}{2}mr^2 For a disk

\alpha = Angular acceleration

The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

2 \alpha \theta = \omega_f^2-\omega_i^2

Where

\omega_{f,i} = Final and Initial Angular velocity

\alpha = Angular acceleration

\theta = Angular displacement

Our values are given as

\omega_i = 0 rad/s

\omega_f = 450rev/min (\frac{1min}{60s})(\frac{2\pi rad}{1rev})

\omega_f = 47.12rad/s

\theta = 3 rev (\frac{2\pi rad}{1rev}) \rightarrow 6\pi rad

r = 7cm = 7*10^{-2}m

m = 17g = 17*10^{-3}kg

Using the expression of angular acceleration we can find the to then find the torque, that is,

2\alpha\theta=\omega_f^2-\omega_i^2

\alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}

\alpha = \frac{47.12^2-0^2}{2*6\pi}

\alpha = 58.89rad/s^2

With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so

\tau = I\alpha

\tau = (\frac{1}{2}mr^2)\alpha

\tau = (\frac{1}{2}(17*10^{-3})(7*10^{-2})^2)(58.89)

\tau = 0.00245N\cdot m \approx 2.45*10^{-3}N\cdot m

Therefore the torque exerted on it is 2.45*10^{-3}N\cdot m

3 0
3 years ago
A car is traveling at 8 m/s accelerates at 3.1 m/s^2 to reach a final top speed of 56 m/s. How much time will pass before the ca
AlekseyPX

Please find attached photograph for your answer.

Hope it helps.

Do comment if you have any query.

3 0
3 years ago
Other questions:
  • What is most likely the author’s motive for writing the article?
    12·2 answers
  • For a certain spring, k = 15N/m. A weight is hung from the spring, stretching it from 0.3m to 0.4m. What force did the weight pr
    6·1 answer
  • At the top of a pole vault, an athlete actually can do work pushing on the pole before releasing it. Suppose the pushing force t
    12·1 answer
  • The second floor of a house is 6m above street level. How much work is reguired to lift a 300 kg refrigerator to the second stor
    13·1 answer
  • If the back of the truck is 1.3 m above the ground and the ramp is inclined at 22 ∘ , how much time do the workers have to get t
    12·1 answer
  • Using diagram differentiate between solenoid and a toroid
    6·1 answer
  • A block lies on a horizontal frictionless surface and
    15·1 answer
  • PLEASE ASAP ILL GIVE BRAINLIEST.
    9·1 answer
  • Qué es el movimiento
    11·2 answers
  • Intelligence test. If you get it right ,you are a critical thinker. You were in the garden,there are 34 people in the yard. You
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!