X-rays have shorter wavelength than visible light. But that's hardly the reason that they're used for medical imaging. xrays have much higher frequencies then visible light which means they have much greater penetrating ability. with xrays you can see inside the body. you can't do that with a visible flashlight no matter how bright and powerful it is.
<span>Now that you know the time to reach its maximum height, you have enough information to find out the initial velocity of the second arrow. Here's what you know about it: its final velocity is 0 m/s (at the maximum height), its time to reach that is 2.8 seconds, but wait! it was fired 1.05 seconds later, so take off 1.05 seconds so that its time is 1.75 seconds, and of course gravity is still the same at -9.8 m/s^2. Plug those numbers into the kinematic equation (Vf=Vi+a*t, remember?) for 0=Vi+-9.8*1.75 and solve for Vi to get.......
17.15 m/s</span>
Answer:
m=57.65 kg
Explanation:
Given Data
Ricardo mass m₁=80 kg
Canoe mass m₂=30 kg
Canoe Length L= 3 m
Canoe moves x=40 cm
When Canoe was at rest the net total torque is zero.
Let the center of mass is at x distance from the canoe center and it will be towards the Ricardo cause. So the toque around the center of mass is given as

We have to find m₂.To find the value of m₂ first we need figure out the value of.As they changed their positions the center of mass moved to other side by distance 2x.
so
2x=40
x=40/2
x=20 cm
Substitute in the above equation we get

Answer:
The radius of the loop is 20.66 km
Explanation:
let the radius of the loop be r
mass of airplane is m
At the top, the pilot experiences two radial forces, which are
1) Gravitational force is mg
2) Centrifugal forces mv²/r out of the center
When the pilot experiences no weight,
then, mg = mv²/r
r = v² / g
= 450² / 9.8
= 20.66 x 10³3
= 20.66 km
Answer:

Explanation:
We can calculate the acceleration experimented by the passenger using the formula
, taking the initial direction of movement as the positive direction and considering it comes to a rest:

Then we use Newton's 2nd Law to calculate the force the passenger of mass m experimented to have this acceleration:

Which for our values is:
