Answer:
a. C: +3 ; b. N: +5 ; c. S:+6 ; d. C: +4; e. Mn: +7 ; f. Cr: +6.
Explanation:
Global charges in molecules is 0
You sum all the oxidation states to determine the oxidation state for the compound.
Na₂C₂O₄ → Sodium oxalate → Global charge: 0
Oxidation state for C: +3
HNO₃ → Nitric acid → Global charge: 0
Oxidation state for N: +5
H₂SO₄ → Sulfuric acid → Global charge: 0
Oxidation state for S: +6
HCO₃⁻ → Bicarbonate → Global charge: -1, this is an anion
Oxidation state for C: +4
KMnO₄ → Potassium permanganate → Global charge: 0
Oxidation state for Mn: +7
Cr₂O₇⁻ → Anion dichromate → Global charge: -2
Oxidation state for Cr: +6
Answer:
Explanation:
Group one:
The elements of group one shows +1 charge because these all are metals and lose their one valance electron.
Hydrogen lithium sodium potassium rubidium cesium francium
Group 2:
The elements of group two shows +2 charge because these all alkali metals and lose their two valance electrons.
beryllium magnesium calcium strontium barium radium
Group 3:
The elements of group three-B shoes +3 charge by losing three valance electrons.
Scandium yttrium lanthanum actinium
Group 4:
The elements of group 4th A and 4th B lose four electrons or gain four electrons to complete the octet and shows +4 or -4 charge.
Group 5:
Group 5th elements gain three electrons and shows -3 charge to complete the 8 electrons. (octet).
It involve the elements of group 5th A.
Group 6:
The elements of group 6A gain two electrons to complete the octet and shows -2 charge.
Group 7:
The elements of group 7A gain one electron to complete the octet and shows -1 charge.
Group 8:
The elements of group 8A are noble gases and have complete octet. That's why shows 0 charge.
The most common reaction that causes spoilage isn't a reaction at all. Molds and Bacteria are attracted to the easily found presence of water in the fruit. They find a natural place to reproduce and what they do causes spoilage.
Very few sources talk about the chemical changes that take place. If you put fruit in a refrigerator it slows the spoiling process down. That means that the chemical reaction has to be endothermic (it requires heat to occur)
The process of spoilage is speeded up by bananas for example, giving up Ethylene gas. You do not want to put a banana with tomatoes, because tomatoes are very sensitive to Ethylene. (It's OK to eat them together. They make a terrific salad. Yum).
I cannot find a definitive source that connects all this together, but the conduct of the fruit in refrigerators confirms what I am saying.
Spoilage is a very complex reaction and interaction with the environment. I have given you a hint of what happens but you should search it out to convince yourself of the outcome.
A low electronegativity
Explanation:
Potassium is a metal that is expected to have a very low electronegativity value.
Electronegativity is the relative tendency by which an atom attracts valence electrons in a chemical bond.
Potassium is an element in the first group on the periodic table.
The common trend is that electronegativity increases from left to right and decreases down a group.
- Potassium as metal will prefer to lose electrons rather than attracting because that will make it achieve the octet configuration that will ensure its stability.
- This is why it will have low electronegativity.
Learn more:
Electronegativity brainly.com/question/11932624
#learnwithBrainly