Time = (distance) / (speed)
<em></em>
Time = (450 km) / (100 m/s)
Time = (450,000 m) / (100 m/s)
Time = <em>4500 seconds </em>(that's 75 minutes)
Note:
This is about HALF the speed of the passenger jet you fly in when you go to visit Grandma for Christmas.
If the International Space Station flew at this speed, it would immediately go ker-PLUNK into the ocean.
The speed of the International Space Station in its orbit is more like 3,100 m/s, not 100 m/s.
Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J
Answer:
t = 0.714 s and x = 5.0 m
Explanation:
This is a projectile throwing exercise, in this case when the skater leaves the bridge he goes with horizontal speed
vₓ = 7.0 m / s
Let's find the time it takes to get to the river
y = y₀ + v_{oy} t - ½ g t²
the initial vertical speed is zero and when it reaches the river its height is zero
0 = y₀ + 0 - ½ g t²
t =
t = ra 2 2.5 / 9.8
t = 0.714 s
the distance traveled is
x = vₓ t
x = 7.0 0.714
x = 5.0 m
That would be false hope this helps