F=nmv
where;
n=no. of bullets = 1
m=mass of bullets=2g *10^-3
V=velocity of bullets200m/sec
F=1
loss in Kinetic energy=gain in heat energy
1/2MV^2=MS∆t
let M council M
=1/2V^2=S∆t
M=2g
K.E=MV^2/2
=(2*10^-3)(200)^2/2
2 councils 2
2*10^-3*4*10/2
K.E=40Js
H=mv∆t
(40/4.2)
40Js=40/4.2=mc∆t
40/4.2=2*0.03*∆t
=158.73°C
Answer:
Explanation:
You can approach an expression for the instantaneous velocity at any point on the path by taking the limit as the time interval gets smaller and smaller. Such a limiting process is called a derivative and the instantaneous velocity can be defined as.#3
For the special case of straight line motion in the x direction, the average velocity takes the form: If the beginning and ending velocities for this motion are known, and the acceleration is constant, the average velocity can also be expressed as For this special case, these expressions give the same result. Example for non-constant acceleration#1
Answer:
Doubling the large mass
Explanation:
Doubling the destance bewteen the masses will simply make the gravitational force weaker
same with every answer exce
Answer:
(a) θ = 33.86°
(b) Ay = 49.92 N
Explanation:
You have that the magnitude of a vector is A = 89.6 N
The x component of such a vector is Ax = 74.4 N
(a) To find the angle between the vector and the x axis you use the following formula for the calculation of the x component of a vector:
(1)
Ax: x component of vector A
A: magnitude of vector A
θ: angle between vector A and the x axis
You solve the equation (1) for θ, by using the inverse of cosine function:

the angle between the A vector and the x axis is 33.86°
(b) The y component of the vector is given by:

the y comonent of the vecor is Ay = 49.92 N
The period is the time taken by the wave to complete an oscillation. The frequency of the given sound is 500 Hz.
<h2>
Period:</h2>
It is the time taken by the wave to complete an oscillation. The frequency is inversely proportional to the time:

Where,
- frequency
- period = 0.002 s
Put the value in the equation,

Therefore, the frequency of the given sound is 500 Hz.
Learn more about Period:
brainly.com/question/842349