Answer:
we know that that frequency= n/t
= 70/20
= 3.5 Hertz
Explanation:
i think that the answer
Answer:
a)
, b) 
Explanation:
a) The maximum height is obtained with the help of the First and Second Derivative Tests:
First Derivative



Second Derivative
(absolute maximum)
The maximum height reached by the ball is:


b) The time required by the ball to hit the ground is:




Just one root offers a solution that is physically reasonable:

The velocity of the ball when it hits the ground is:


Answer:
yes
Explanation:
<em>A critical period?
</em>
<em>A.begins and ends abruptly
</em>
<em>B.begins and ends gradually
</em>
<em>C.is unaffected by stimuli
</em>
<em>D.is unlikely to impact development</em>
<em>correct answer (A.begins and ends abruptly
)</em>
probabilityAnswer:
2/27
Explanation:
The elk can not be eaten so we remove that from the probablity
so we have x/18
songbird = 4/18
mice = 6/18
4/18*6/18 = 2/27
Answer:
t = 0.55[sg]; v = 0.9[m/s]
Explanation:
In order to solve this problem we must establish the initial conditions with which we can work.
y = initial elevation = - 1.5 [m]
x = landing distance = 0.5 [m]
We set "y" with a negative value, as this height is below the table level.
in the following equation (vy)o is equal to zero because there is no velocity in the y component.
therefore:
![y = (v_{y})_{o}*t - \frac{1}{2} *g*t^{2}\\ where:\\(v_{y})_{o}=0[m/s]\\t = time [sg]\\g = gravity = 9.81[\frac{m}{s^{2}}]\\ -1.5 = 0*t -4.905*t^{2} \\t = \sqrt{\frac{1.5}{4.905} } \\t=0.55[s]](https://tex.z-dn.net/?f=y%20%3D%20%28v_%7By%7D%29_%7Bo%7D%2At%20-%20%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%5C%5C%20%20%20where%3A%5C%5C%28v_%7By%7D%29_%7Bo%7D%3D0%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20%5Bsg%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%5D%5C%5C%20-1.5%20%3D%200%2At%20-4.905%2At%5E%7B2%7D%20%5C%5Ct%20%3D%20%5Csqrt%7B%5Cfrac%7B1.5%7D%7B4.905%7D%20%7D%20%5C%5Ct%3D0.55%5Bs%5D)
Now we can find the initial velocity, It is important to note that the initial velocity has velocity components only in the x-axis.
![(v_{x} )_{o} = \frac{x}{t} \\(v_{x} )_{o} = \frac{0.5}{0.55} \\(v_{x} )_{o} =0.9[m/s]](https://tex.z-dn.net/?f=%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D%20%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5C%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D%20%5Cfrac%7B0.5%7D%7B0.55%7D%20%5C%5C%28v_%7Bx%7D%20%29_%7Bo%7D%20%3D0.9%5Bm%2Fs%5D)