Answer:

Explanation:
Given that:
p = magnitude of charge on a proton = 
k = Boltzmann constant = 
r = distance between the two carbon nuclei = 1.00 nm = 
Since a carbon nucleus contains 6 protons.
So, charge on a carbon nucleus is 
We know that the electric potential energy between two charges q and Q separated by a distance r is given by:

So, the potential energy between the two nuclei of carbon is as below:

Hence, the energy stored between two nuclei of carbon is
.
Answer:
<em>The answer is medial!</em>
Explanation:
<em>The vertebral region is </em><u><em>medial</em></u><em> to the scapula.</em>
<em>Hope This Helps!</em>
<em>-</em><u><em>Justin:)</em></u>
Answer:
Earth's crust is covered by a densed air blanket called atmosphere. Due to which we feel warm even during night when there is no sun. The air near the atmosphere is less dense compared to the air near our crust. Similarly we can experience high pressure near the atmosphere comparelatively we experience less pressure near crust. The presence of atmosphere above us makes the wind fair sometimes stromy and also helps in pteperation of wind and breezes in earth's surface.
The dimension of force, F is ML/T².
<h3>What is force?</h3>
Force is a push o push agent which causes a change in the state of rest or motion of an object.
From a fundamental law of motion states that the acceleration of an object is directly proportional to the resultant force exerted on the object and inversely proportional to its mass.
Mathematically; acceleration ∝ F/m
F = ma
dimension of Mass = M
dimension of acceleration = L/T²
dimension of force, F = ML/T²
In conclusion, the dimension of force is obtained from the dimensions of mass and acceleration.
Learn more about dimension of force at: brainly.com/question/28243574
#SPJ1
Answer:
angular resolution = 0.07270° = 1.269 ×
rad
greatest distance from the camera = 118.20 m = 0.118 km
Explanation:
given data
diameter = 0.50 mm = 0.5 ×
m
distance apart = 15 cm = 15×
m
wavelength λ = 520 nm = 520 ×
m
to find out
angular resolution and greatest distance from the camera
solution
first we expression here angular resolution that is
sin θ =
.......................1
put here value λ is wavelength and d is diameter
we get
sin θ =
θ = 0.07270° = 1.269 ×
rad
and
distance from camera is calculate here as
θ =
.................2
I = 
I = 118.20 m = 0.118 km