<span>How many electrons would it take to equal the mass of a proton:
Here's one way of finding the value of it:
=> number of electrons is equivalent to 1 proton.
Let's have an example.
1.6726*10 -24g
_______________
1 proton
______________
9.109*10- ^28g
_______________
1 electron
Based on the given example above, the electrons is 1 839 per 1 proton.
It's about 1800 electrons/proton.</span>
Heavy crate sits at rest on the floor of a warehouse. you push on the crate with a force of 400 N, and it doesn't budge. The magnitude of the friction force on the crate in Newton is 400N
This is due to Friction force, which is defined as the resisting force that acts on a body when it is at rest (Static friction) or when it is in motion (Kinetic friction).
When a force is applied on a stationary body, the force of static friction starts to act on the body which prevents any relative motion between the object and surface. The magnitude of friction increases up to μsN, where μs is the coefficient of static friction. As the crate didn't budge, it means the amount of force applied was less than μsN. Hence the force applied was canceled by an equal and opposite amount of frictional force which was equal to 400N.
Learn more about frictional force here
brainly.com/question/1714663
#SPJ4
Answer:
A projectile is an object upon which the only force is gravity. Gravity acts to influence the vertical motion of the projectile, thus causing a vertical acceleration. The horizontal motion of the projectile is the result of the tendency of any object in motion to remain in motion at constant velocity.
Explanation:
Answer:
2.1 rad(anticlockwise).
Explanation:
So, we are given the following data or parameters or information in the question above:
=> "The torsional stiffness of the spring support is k = 50 N m/rad. "
=> "If a concentrated torque of mag- nitude Ta = 500 Nm is applied in the center of the bar"
=> "L = 300 mm Assume a shear modu- lus G = 10 kN/mm2 and polar monnent of inertia J = 2000 mln"
Hence;
G × J = 10 kN/mm2 × 2000 mln = 20 Nm^2.
Also, L/2 = 300 mm /2 = 0.15 m (converted to metre).
==> 0.15/20 (V - w) + θ = 0.
==> 0.15/20 (V - w ) = -θ.
Where V = k = 50 N m/rad
w = 183.3 θ.
Therefore, w + Vθ = 500 Nm.
==> 183.3 + 50 θ = 500 Nm.
= 6.3
Anticlockwise,
θ = 2.1 rad.