The correct answer is: Option (D) length, speed
Explanation:
According to Faraday's Law of Induction:
ξ = Blv
Where,
ξ = Emf Induced
B = Magnetic Induction
l = Length of the conductor
v = Speed of the conductor.
As you can see that ξ (Emf/voltage induction) is directly proportional to the length and the speed of the conductor. Therefore, the correct answer will be Option (D) Length, Speed
Hello!
On a cold winters day, if you left a drink setting outside, it could freeze because the heat (related to the kinetic energy) of the atoms in the drink will be transferred to the environment to achieve energy equilibrium.
Heat transfer occurs by various mechanisms, flowing from the hottest body to the coldest, that's why the heat goes from the drink, which has a higher temperature (and kinetic energy) to the environment, which has a lower temperature. This is described by the second law of thermodynamics
Answer:
Pressure increases as you move deeper below earth's surface.
Tempurature increases as you move deeper below earth's surface.
Hope this helps!
Explanation:
Answer: C. 1.4 10-11 N up
Explanation:
The magnetic force, F on a charge q moving with velocity v in a magnetic field B at an angle θ is given by:
F = q v B sin θ
Charge of proton, q = 1.6 × 10⁻¹⁹ C
Strength of magnetic field, B = 3.4 T pointing outwards
velocity of the proton, v = 2.5 × 10⁷ m/s towards left
Magnetic force is given by:
F = 1.6 × 10⁻¹⁹ C× 2.5 × 10⁷ m/s ×3.4 T× sin 90 = 13.6 × 10⁻¹² N = 1.4 × 10⁻¹¹ N up
The direction of the force is given by Lorentz Right hand rule. The fingers point magnetic field, the thumb points towards velocity, then the force on the proton is given by the direction perpendicular to the palm.
The magnetic field acts outwards with velocity of the proton towards left. The force would act perpendicular to the two -upwards.
Answer:
This is because helium molecules get bigger when they heat up , so if your balloons keep getting hotter , they will eventually pop