(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s:
Answer:
The correct option is;
c. 22.6
Explanation:
The given parameters are;
The hypotenuse of the vector = 32
The angle of the vector = 45°
Therefore, the vector component in the y-axis is given as follows;

Substituting the values from the question gives;

The vector component in the y-axis,
, is approximately 22.6.
Answer:
Acceleration of the car will be 
Explanation:
We have given that car starts from rest so initial velocity of the car u = 0 m/sec
And car traveled 400 m in 10 sec
So distance traveled by car s = 400 m
Time taken to compete this distance t = 10 sec
We have to find the acceleration of the car
From second equation of motion we know that 
So 

So acceleration of the car will be 
Answer:
7716.179 pounds? Are you asking for a conversion or something different?