Answer:
the answer is D the dominant over powers the resecive traits
Explanation:
1. The three factors are;
- Increasing the surface area of the reactants
- Using a catalyst
- Increasing temperature
2. Raising the temperature of a reaction mixture is the same as increasing the kinetic energy of the reacting molecules.
3. This reaction is an exothermic reaction. In exothermic reaction, the temperature of the system (mixture) decreases while that of the surroundings increases.
4. Reactions that releases energy to the surroundings are exothermic reactions.
5. All the options is an example of exothermic process because heat is being removed from the system except;
B. Evaporation of water - This is because it must absorb heat from the surroundings making it endothermic.
Answer:
Assuming that all of the oxygen is used up, 1.53×4111.53×411 or 0.556 moles of C2H3Br3 are required. Because there are only 0.286 moles of C2H3Br3 available, C2H3Br3 is the limiting reagent.
Limiting Reagent What is the limiting reagent if 76.4 grams of C2H3Br3 were reacted with 49.1 grams of O2? C2H3Br3 + 11O2 → 8CO2 + 6H2O + 6Br2 SOLUTION Using Approach 1: A. 76.4g × (1 mol/ 266.72 g) = 0.286 moles C2H3Br3 49.1g × (1 mole/ 32 g) = 1.53 moles O2 B.
Explanation:
MRK ME BRAINLIEST PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Map%3A_Introductory_Chemistry_(Tro)/08%3A_Quantities_in_Chemical_Reactions/8.04%3A_Limiting_Reactant_and_Theoretical_Yield
Answer:
mol·L⁻¹·s⁻¹
Explanation:
In the case of a <em>zero-order reaction</em>, the reaction rate does not change with the decrease or increase in the concentrations of the reactants:
And because the rate must have units of mol·L⁻¹·s⁻¹, then the rate constant <em>k</em> must also have units of mol·L⁻¹·s⁻¹.