Answer:
The concentration of H₃PO₄ will increase.
Explanation:
H₃PO₄(aq) + H₂O(l) ⇄ H₂PO₄⁻(aq) + H₃O⁺(aq)
According to Le Châtelier's Principle, when we apply a stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
If we add more H₂PO₄⁻, the position of equilibrium will move to the left to get rid of the added H₂PO₄⁻.
The concentration of H₃PO₄ will increase.
Answer: All organic compound depends on H-bonding with water. more stronger H-bonding with water more will be soluble.
Explanation:
1. It depends primarily upon the function groups of that compound. It also depends on the size of the compound.
2. some organic compound which soluble in water for example: alcohols, ethers, carboxylic acids. Because of the functional groups attached to the organic structure (the C-H backbone) are what effect the solubilities.Like carboxylic acids and alcohols form hydrogen bonds with the water, helping to solubilize it.
3. Take alcohols for example: methanol, ethanol, and isopropanol are all completely soluble in water. By the time you get to butanol and some of the larger alcohols, including those with more complex structures, they tend to be less soluble.
<span>We look at the end of the day:
n(HNO3) added = 0.500*17.0/1000 = 0.00850 mol
n(NH3) = 0.200*75.0/1000 - 0.00850 = 0.00650 mol
[NH3] left = 0.00650*1000/(17.0+75.0) = 0.070652
M [OH-] = Kb * [NH3] = 0.070652*1.8*10^(-5) = 1.27174 x 10^(-6)
pOH = -log[OH-] ≈ 5.8956 pH = 14 - pOH ≈ 8.10</span>
Answer:
option C. it contain 6 neutrons.
Explanation:
The question is incomplete, complete question is :
In the Haber reaction, patented by German chemist Fritz Haber in 1908, dinitrogen gas combines with dihydrogen gas to produce gaseous ammonia. This reaction is now the first step taken to make most of the world's fertilizer. Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that 348 liters per second of dinitrogen are consumed when the reaction is run at 205°C and 0.72 atm. Calculate the rate at which ammonia is being produced.
Answer:
The rate of production of ammonia is 217.08 grams per second.
Explanation:

Volume of dinitrogen used in a second = 348 L
Temperature of the gas = T = 205°C = 205+273 K = 478 K
Pressure of the gas = P = 0.72 atm
Moles of dinitrogen = n

According to reaction, 1 mole of dinitriogen gives 2 mole of ammonia.Then 6.385 moles of dinitrogen will give:

Mass of 12.769 moles of ammonia;
12.769 mol 17 g/mol = 217.08 g
217.08 grams of ammonia is produced per second.So, the rate of production of ammonia is 217.08 grams per second.