Complete question is;
A rocket ship starts from rest and turns on its forward booster rockets, causing it to have a constant acceleration of 4 m/s² rightward. After 3s, what will be the velocity of the rocket ship?
Answer:
v = 12 m/s
Explanation:
We are given;
Initial velocity; u = 0 m/s (because ship starts from rest)
Acceleration; a = 4 m/s²
Time; t = 3 s
To find velocity after 3 s, we will use Newton's first equation of motion;
v = u + at
v = 0 + (4 × 3)
v = 12 m/s
Answer:
2.23 × 10^6 g of F- must be added to the cylindrical reservoir in order to obtain a drinking water with a concentration of 0.8ppm of F-
Explanation:
Here are the steps of how to arrive at the answer:
The volume of a cylinder = ((pi)D²/4) × H
Where D = diameter of the cylindrical reservoir = 2.02 × 10^2m
H = Height of the reservoir = 87.32m
Therefore volume of cylindrical reservoir = (3.142×202²/4)m² × 87.32m = 2798740.647m³
1ppm = 1g/m³
0.8ppm = 0.8 × 1g/m³
= 0.8g/m³
Therefore to obtain drinking water of concentration 0.8g/m³ in a reservoir of volume 2798740.647m³, F- of mass = 0.8g/m³ × 2798740.647m³ = 2.23 × 10^6 g must be added to the tank.
Thank you for reading.
Answer:
vf = 11.2 m/s
Explanation:
m = 10 Kg
F = 2*10² N
x = 4.00 m
μ = 0.44
vi = 0 m/s
vf = ?
We can apply Newton's 2nd Law
∑ Fx = m*a (→)
F - Ffriction = m*a ⇒ F - (μ*N) = F - (μ*m*g) = m*a ⇒ a = (F - μ*m*g)/m
⇒ a = (2*10² N - 0.44*10 Kg*9.81 m/s²)/10 Kg = 15.6836 m/s²
then , we use the equation
vf² = vi² + 2*a*x ⇒ vf = √(vi² + 2*a*x)
⇒ vf = √((0)² + 2*(15.6836 m/s²)*(4.00m)) = 11.2 m/s