Answer:
The concentration of COF₂ at equilibrium is 0.296 M.
Explanation:
To solve this equilibrium problem we use an ICE Table. In this table, we recognize 3 stages: Initial(I), Change(C) and Equilibrium(E). In each row we record the <em>concentrations</em> or <em>changes in concentration</em> in that stage. For this reaction:
2 COF₂(g) ⇌ CO₂(g) + CF₄(g)
I 2.00 0 0
C -2x +x +x
E 2.00 - 2x x x
Then, we replace these equilibrium concentrations in the Kc expression, and solve for "x".
![Kc=8.30=\frac{[CO_{2}] \times [CF_{4}] }{[COF_{2}]^{2} } =\frac{x^{2} }{(2.00-2x)^{2} } \\8.30=(\frac{x}{2.00-2x} )^{2} \\\sqrt{8.30} =\frac{x}{2.00-2x}\\5.76-5.76x=x\\x=0.852](https://tex.z-dn.net/?f=Kc%3D8.30%3D%5Cfrac%7B%5BCO_%7B2%7D%5D%20%5Ctimes%20%5BCF_%7B4%7D%5D%20%7D%7B%5BCOF_%7B2%7D%5D%5E%7B2%7D%20%7D%20%3D%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%282.00-2x%29%5E%7B2%7D%20%7D%20%5C%5C8.30%3D%28%5Cfrac%7Bx%7D%7B2.00-2x%7D%20%29%5E%7B2%7D%20%5C%5C%5Csqrt%7B8.30%7D%20%3D%5Cfrac%7Bx%7D%7B2.00-2x%7D%5C%5C5.76-5.76x%3Dx%5C%5Cx%3D0.852)
The concentration of COF₂ at equilibrium is 2.00 -2x = 2.00 - 2 × 0.852 = 0.296 M
Answer:
Unit of power is watt
Explanation:
Power = rate of doing work
or
Power, P = W/t
Where
W is work done and t is time
The unit of work done is Joules and that of time is seconds.
Power, P = J/s
We know that, J/s = watts
Hence, the unit of power is watts.
Answer:
All three vehicles have the same kinetic energy because they have equal speed.
Answer:
0.3267 M
Explanation:
To solve this problem, first we calculate how many moles of Mn(ClO₄)₂ are contained in 23.640 g of Mn(ClO₄)₂·6H₂O.
Keep in mind that the crystals of Mn(ClO₄)₂ are hydrated, and <em>we need to consider those six water molecules when calculating the molar mass of the crystals</em>.
Molar mass of Mn(ClO₄)₂·6H₂O = 54.94 + (35.45+16*4)*2 + 6*18 = 361.84 g/mol
Now we <u>proceed to calculate</u>:
- 23.640 g Mn(ClO₄)₂·6H₂O ÷ 361.84 g/mol = 0.0653 mol Mn(ClO₄)₂·6H₂O = mol Mn(ClO₄)₂
Now we divide the moles by the volume, to <u>calculate molarity</u>:
- 200 mL⇒ 200/1000 = 0.200 L
- 0.0653 mol Mn(ClO₄)₂ / 0.200 L = 0.3267 M