Answer:
Average speed = distance/time
From 1 to 9 seconds:
Distance covered = 1 - 0.2 = 0.8 km
Time = 9 - 1 = 8 sec
Average speed = 0.8 km / 8 sec
Average speed = 0.1 km/s .
The average speed for the whole test is 1.6 km / 20 sec = 0.08 km/sec. A graph of speed vs time would average out as a horizontal line at 0.08 km/sec from 1 sec to 21 sec. The area under it would be (0.08 km/s) x (20 sec) = 1.6 km.
Surprise surprise ! The area under a speed/time graph is the distance covered during that time !
In closing, I want to express my gratitude for the gracious bounty of 3 points with which I have been showered. Moreover, the green breadcrust and tepid cloudy water have also been refreshing.
Explanation:
That n2 = 2*n1. That is, the index of refraction is twice as big in medium 2 since v=c/n
Complete question is:
A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 m/s. Neglect friction.
Answer:
(V_A) = 31.32 m/s
Explanation:
We are given;
car's mass, m = 1200 kg
h_A = 100 m
h_B = 150 m
v_B = 0 m/s
From law of conservation of energy,
the distance from point A to B is;
h = 150m - 100 m = 50 m
From Newton's equations of motion;
v² = u² + 2gh
Thus;
(V_B)² = (V_A)² + (-2gh)
(negative next to g because it's going against gravity)
Thus;
(V_B)² = (V_A)² - (2gh)
Plugging in the relevant values;
0² = (V_A)² - 2(9.81 × 50)
(V_A) = √981
(V_A) = 31.32 m/s
I would say the answer to your question is A Ferris wheel turning at a constant speed. The reasoning behind this answer is the fact that traveling in a constant direction at a constant speed is not accelerating. The Ferris wheel is the only option that fits this description. The last option would be incorrect due to independent causes such as speed limit changes as well as turns and stops on the highway.
Answer: 0.2 hours
Explanation: In order to solve this question we have to considerer that a recargeable battery can supply 1800 mA in one hour then we have to determine how long could this battery drive current through a long, thin wire of resistance 34 Ω .
Besides, this battery has a voltage of 12 V
so by using the Ohm law we also know that V=R*I,
Fron this we can obtain:
I= V/R= 12 V/ 34 Ω=0.35 A= 350 mA
then considering that this battery can supply 1800 mA in one hour we have this battery can supply 350 mA in x time in the form:
1hour------- 1800 mA
x hour--------350 mA
time= 350/1800= 0.2 hour