A. power plants burn coal. A fossil-fuel power plant is one that burns fossil fuels such as coal, natural gas or petroleum (oil) to produce electricity.
b. Fossil fuels are called so because they have been derived from fossils, which were formed millions of years ago during the time of the dinosaurs. They are fossilized organic remains that over millions of years have been converted to oil, gas, and coal.
C. they are generally classified as non-renewable resources because they take millions of years to form and known viable reserves are being depleted much faster than new ones are generated.
5.
a. Gravitational potential energy and work done
If an object is lifted, work is done against the force of gravity.
When work is done energy is transferred to the object and it gains gravitational potential energy.
If the object falls from that height, the same amount of work would have to be done by the force of gravity to bring it back to the Earth’s surface.
If an object at a certain height has 2000 J of gravitational potential energy, we can say that:
2000 J of work has been done in getting the object to that height from the ground
and
2000 J of work would have to be done to bring it back to the ground.
Average acceleration over a time interval lasting
is

where
is the difference in the jet's final and initial velocities. It's coming to a rest, so

so the average acceleration has magnitude 8.9 m/s^2 and is pointing West (the direction opposite the jet's movement, which should make sense because the jet is slowing down).
R=U^2/P=120*120/40=360 ohm
P2=U2^2/R=132*132/360=48.4 w
power increase ratio (48.4-40)/40=21%
Answer:
Work done will be 2.205 j
Explanation:
We have given that the spring is compressed b 37.5 cm
So d = 0.375 m
Mass of the block m = 600 gram = 0.6 kg
Acceleration due to gravity 
Gravitational force on the block 
Now we know that work done is give by 
Answer:
Work done.
Explanation:
The skater who lifts has to overcome the partner's weight. When lifted up by 1 meter, her potential energy increases by (mass)x(gravitational acceleration)x(1meter), which is the amount of work done.
(This all assumes lifting vertically and no other forces being part of the picture)