Q = magnitude of charge on each of the two point charge = 3.60 mC = 3.60 x 10⁻³ C
r = distance between the two point charges = 9.3 cm = 0.093 m
k = constant = 9 x 10⁹ Nm²/C²
F = magnitude of the force between the two point charges = ?
according to coulomb's law , force between two charges is given as
F = k Q²/r²
inserting the values
F = (9 x 10⁹) (3.60 x 10⁻³)²/(0.093)²
F = 1.35 x 10⁷ N
Answer: The velocity magnitude or the velocity direction chages.
Explanation:
According to Newton's second law of motion, the acceleration of a system moved in same direction and is also directly proportional to the external force which acts on it while inversely proportional to the mass. The formula is: a = F/m
Based on the question, since the object obtains acceleration, then it can be infered that there will be changes in the velocity magnitude or the direction as a result of the motion.
<span>Of all planets in our solar system Jupiter has the greatest gravitational "Force as it is heaviest Planet in the solar system"
Hope this helps!</span>
Answer:
linear charge density = -9.495 ×
C/m
Explanation:
given data
revolutions per second = 1.80 ×
radius = 1.20 cm
solution
we know that when proton to revolve around charge wire then centripetal force is require to be in orbit of radius around provide by electric force
so
- q × E = m × w² × r ..................1
- 9 ×
×
q = m × w² × r ............2
and w =
w =
w = 1.80 ×
×
w = 11304000 rad/s
so here from equation 2
- 9 ×
×
1.80 ×
= 1.672 ×
× 11304000² × 0.0120
linear charge density = -9.495 ×
C/m