is there a tutor available
The atoms/ particles that are in the gas have gotten energy from the heat, because of that, they zoom around the container, putting pressure on it :) hope it helps :)
Answer:
the image is virtual and erect and the lens divergent; therefore the correct answer is C
Explanation:
In a thin lens the magnification given by
m = h '/ h = - q / p
where h ’is the height of the image, h is the height of the object, q is the distance to the image and p is the distance to the object.
It indicates that the object is straight and is placed at a distance p> f
analyze the situation tells us that the magnification is positive so the distance to the image must be negative, that is, that the image is on the same side as the object.
Consequently the lens must be divergent
The magnification value is
0.4 = h ’/ h
h ’= 0.4 h
therefore the erect images
therefore the image is virtual and erect and the lens divergent; therefore the correct answer is C
The first thing we have to do for this case is write the kinematic equationsto
vf = a * t + vo
rf = a * (t ^ 2/2) + vo * t + ro
Then, for the bolt we have:
100% of your fall:
97 = g * (t ^ 2/2)
clearing t
t = root (2 * ((97) / (9.8)))
t = 4.449260429
89% of your fall:
0.89*97 = g * (t ^ 2/2)
clearing t
t = root (2 * ((0.89 * 97) / (9.8)))
t = 4.197423894
11% of your fall
t = 4.449260429-4.197423894
t = 0.252
To know the speed when the last 11% of your fall begins, you must first know how long it took you to get there:
86.33 = g * (t ^ 2/2)
Determining t:
t = root (2 * ((86.33) / (9.8))) = <span>
4.19742389 </span>s
Then, your speed will be:
vf = (9.8) * (4.19742389) = 41.135 m / s
Speed just before reaching the ground:
The time will be:
t = 0.252 + <span>
4.197423894</span> = <span>
4.449423894</span> s
The speed is
vf = (9.8) * (4.449423894) =<span>
<span>43.603</span></span> m / s
answer
(a) t = 0.252 s
(b) 41,135 m / s
(c) 43.603 m / s