Answer:
At the highest point and at the lowest point the velocity of the mass hung on a spring = 0
Explanation:
Simple Harmonic Motion ( S.H.M) : Simple harmonic motion can be defined as a type of motion were a body vibrates or moves to and fro along a straight line under the influence of a force, so that the acceleration of the body towards a fixed point (equilibrium position) is proportional to its distance or displacement from that point. Examples of bodies undergoing simple harmonic motion are
<em>⇒ The motion of a mass hung on a spring.</em>
<em>⇒ The motion of a simple pendulum</em>
<em>⇒ The motion of a loaded test - tube in a liquid.</em>
Motion of a mass hung on a spring:When a mass is hung to one end spring and other end is firmly clamped to a rigid support.(i)When the mass is in motion, (ii)it pulled down to its lowest point, passes through it equilibrium position (iii) goes to its highest point.
<em>(1) At the lowest and the highest point during the motion of a mass hung a spring, the velocity = 0</em>
<em>(2) At the equilibrium point or unstretched position the velocity is maximum</em>
<em></em>
<em></em>
B b b b b b b bb bb bb b b b b b b b b b
Answer:
The answer is 13 however make sure if they ask for a certain measurement like meter answer it by saying 13 meters.
Explanation:
This basically turns into basic algebra if you know the formula for work. The formula for work is W=F*d
Here are the variables that you know 650J=50N*d so you need d.
All you do is divide 650J by 50N and you get a total of 13 (meters since I don't know what they want you to put it in).
Answer:
0.75 g/cm^3
Explanation:
The formula for density:

Where m is the mass and V is the volume.
So, we can substitute values for m and V:

Therefore, the density is 0.75 g/cm^3 (watch the units!)