1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
5

A tiny object carrying a charge of +44 μC and a second tiny charged object are initially very far apart. If it takes 21 J of wor

k to bring them to a final configuration in which the +44 μC object i is at x = 1.00 mm, y = 1.00 mm, and the other charged object is at x = 1.00 mm, y = 3.00 mm (Cartesian coordinate system), find the magnitude of the charge on the second object. (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)
Physics
1 answer:
STatiana [176]3 years ago
6 0

Answer:

The magnitude of the second charge is \rm 1.062\times 10^{-7}\ C or \rm 0.1062\ \mu C.

Explanation:

The work done in bringing a charged particle from one point to another in the presence of some electric field is equal to the change in the electric potential energy of the charge in moving from one point to another.

The electric potential energy of some charge q_o at a point in the electric field of another charge q is given by the product of the amount of charge q_o and electric potential at that point due to the charge q.

U = q_o\ V.

The electric potential at that point is given by

V = \dfrac{kq}{r}.

where k is the Coulomb's constant.

Therefore,

U=q_o\ \dfrac{kq}{r}.

Now, We have given two charges q_1 = +44\ \mu C = +44\times 10^{-6}\ C and q_2, whose value is to be found.

When the two charges are infinitely dar apart, the electric potential energy of the system is given by

U_i = \dfrac{kq_1q_2}{\infty}=0.

When the coordinates of position of the two charges are

(x_1,\ y_1) = (1.00\ mm,\ 1.00\ mm).\\(x_2,\ y_2) = (1.00\ mm,\ 3.00\ mm).

The distance between the two charges is given by

r=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(1.00-1.00)^2+(3.00-1.00)^2}=2.00\ mm = 2.00\times 10^{-3}\ m.

The electric potential energy of the charges in this configuration is given by

U_f = \dfrac{kq_1q_2}{r}\\=\dfrac{(8.99\times 10^9)\times (+44\times 10^{-6})\times q_2}{2.00\times 10^{-3}}\\=1.9778\times 10^8\times q_2.

The change in the electric potential energy of the system is equal to the work done to bring the system from inifinitely far apart position to given configuration.

Therefore,

W = U_f-U_i\\21=(1.9778\times 10^8\times q_2)-0\\\Rightarrow q_2 = \dfrac{21}{1.9778\times 10^8}\\=1.062\times 10^{-7}\ C\\=0.1062\times 10^{-6}\ C\\=0.1062\ \mu C.

You might be interested in
Suppose a magnetic reversal accoured today .
Brut [27]
They would have the magnetic parts of the rocks oriented differently. This leaves a trace that allow scientists to find out how often this actually happens (as far as I remember, it's on average once in 800 000 years)
3 0
3 years ago
Read 2 more answers
What is the minimum force require to move a 5kg wooden crate on a wooden floor?
kolbaska11 [484]

You need to know the coefficient of static friction between a wooden object and a wooden surface. I'll denote it with <em>µ</em>. If you're given a specific value you should obviously use that.

By Newton's second law, the horizontal and vertical net forces are

• net horizontal:

∑ <em>F</em> = <em>p</em> - <em>f</em> = 0

• net vertical:

∑ <em>F</em> = <em>n</em> - <em>w</em> = 0

where

<em>p</em> = magnitude of the <u>p</u>ushing force

<em>f</em> = mag. of <u>f</u>riction

<em>n</em> = mag. of the <u>n</u>ormal force

<em>w</em> = <u>w</u>eight of the crate

The second equation gives

<em>n</em> = <em>w</em> = (5 kg) (9.8 m/s²) = 49 N

Friction is proportional to the normal force by a factor of <em>µ</em>, so

<em>f</em> = <em>µ</em> (49 N) = 49<em>µ</em> N

To overcome static friction, the push has to exceed this in magnitude, so that

<em>p</em> > 49<em>µ</em> N

For instance, if <em>p</em> = 0.25, then <em>p</em> would need to greater than 12.25 N. (This example isn't particularly helpful, though, since both possibly correct options are larger than 12.25 N...)

7 0
3 years ago
What is the resistance (R) when voltage is 179V and current is 5 Amps?
Evgesh-ka [11]

Answer:

R = 35.8 Ω

Explanation:

Recall Ohm's Law:

V = I * R

then R = V / I

in our case:

R = 179 V / 5 A = 35.8 Ω

3 0
2 years ago
The effect produced when two or more sound waves pass through the same point simultaneously is called?
navik [9.2K]
The answer to the question is sound
7 0
3 years ago
¿Qué nombre recibe un electrón que abandona el espacio interno del átomo dirigiéndose al exterior del átomo?
Alenkinab [10]

Answer:

i dont speack spanish sorry

Explanation: agian sorry

7 0
2 years ago
Other questions:
  • What are the two systems of measurement
    6·1 answer
  • How to get the answer
    15·1 answer
  • Did the aluminum foil and the paper tent versoriums behave the way you predicted? What did you learn that could help you improve
    8·1 answer
  • A ball falling though the air has ?
    10·1 answer
  • The figure shows the motion of electrons in a wire which is near the North pole of a magnet. The wire will be pushed:
    9·1 answer
  • Which physical property of iron is being tested in the picture
    6·1 answer
  • 2. A car is sitting at the top of a hill that is 14 m high. The car has a mass of 53 kg. The car has
    7·1 answer
  • Why are electromagnets used in metal scrap yards?
    7·1 answer
  • A football player kicks a field goal from a distance of 45 m from the goalpost. The football is launched at a 35° angle above th
    14·1 answer
  • USE INTERNET TO ANSWER THE FOLLOWIN 6. Research about the causes of the following: (use diagrams were necessary
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!