Answer:
The time taken by the rock to reach the ground is 0.569 seconds.
Explanation:
Given that,
A student throws a rock horizontally off a 5.0 m tall building, s = 5 m
The initial speed of the rock, u = 6 m/s
We need to find the time taken by the rock to reach the ground. Using second equation of motion to find it. We get :

So, the time taken by the rock to reach the ground is 0.569 seconds. Hence, this is the required solution.
Do you mean ‘Does a larger object have less attraction than a smaller object?’ If so, then the answer is objects with a larger mass exert more attraction while objects with a smaller mass have less attraction.
She would lose <span> 2,880 Joules (J) of energy </span>
Answer:
e) indicated that the speed of light is the same in all inertial reference frames.
Explanation:
In 18th century, many scientists believed that the light just like air and water needs a medium to travel. They called this medium <em>aether</em>. They believed that even the space is not empty and filled with aether.
Michelson and Morley tried to prove the presence and speed of this aether through an interference experiment in 1887. They made an interferometer in which light was emitted at various angles with respect to the supposed aether. Both along the flow and against the flow to see the difference in the speed of light. But they did not find no major difference and thus it became the first proof to disprove the theory of aether.
It thus proved that the speed of light remains same in all inertial frames.
Also, it became a base for the special theory of relativity by Einstein.