Answer:

Explanation:
Given that:
The weight of ball = 4 pounds
The spring stretch x = 1/15 feet
Using the relation of weight on an object:
W = mg
m = W/g
m = 4 / 32
m = 1/8
Now, from Hooke's law:
F = kx
4 =k(1/5)
k = 20 lb/ft
However, since the air resistance is 4 times the velocity;
Then, we can say:
C = 4
Now, for the damped vibration in the spring-mass system, we have:



Solving the differential equation:
m² + 32m + 160 = 0
Solving the equation:
m = -25.80 or m = -6.20
So, the general solution for the equation is:


y(0) = 0 ; y'(0) = 8


At y'(0) = 8

From (1), let
, then replace the value of c_1 into equation (2)





From 


∴
The required solution in terms of t is:
