<em><u />the correct option is <u>c ) 10,000...</u>
an acid which is more acidic than 6 pH will be of pH 5 acid because if one acid is stronger than the other acid than its magnitude of strength is 1000... it is constant always...</em>
Answer:
i dk how ur school works, but you'll most likely have to take that science again to get the credits u need to graduate
Explanation:
Answer: To test the properties of the particles, Thomson placed two oppositely-charged electric plates around the cathode ray. The cathode ray was deflected away from the negatively-charged electric plate and towards the positively-charged plate. This indicated that the cathode ray was composed of negatively-charged particles.
Thomson also placed two magnets on either side of the tube, and observed that this magnetic field also deflected the cathode ray. The results of these experiments helped Thomson determine the mass-to-charge ratio of the cathode ray particles, which led to a fascinating discovery−-−minusthe mass of each particle was much, much smaller than that of any known atom. Thomson repeated his experiments using different metals as electrode materials, and found that the properties of the cathode ray remained constant no matter what cathode material they originated from. From this evidence, Thomson made the following conclusions:
The cathode ray is composed of negatively-charged particles.
The particles must exist as part of the atom, since the mass of each particle is only ~1/2000 the mass of a hydrogen atom.
These subatomic particles can be found within atoms of all elements.
While controversial at first, Thomson's discoveries were gradually accepted by scientists. Eventually, his cathode ray particles were given a more familiar name: electrons. The discovery of the electron disproved the part of Dalton's atomic theory that assumed atoms were indivisible. In order to account for the existence of the electrons, an entirely new atomic model was needed.
Answer:
6.25 X10^{-9} = Ka

Explanation:
The ionic equation for the hydrolysis of the cation of the given salt will be:

The expression for Ka will be:
Ka = ![\frac{[H^{+}][MOH]}{[M^{+}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BMOH%5D%7D%7B%5BM%5E%7B%2B%7D%5D%7D)
As given that the concentration of the salt is 0.1 M and pH of solution = 4.7, we can determine the concentration of Hydrogen ions from the pH
pH = -log [H⁺]
[H⁺] = antilog(-pH) = antilog (-4.7) = 2 X 10⁻⁵ M = [MOH]
Let us calculate Ka from this,
Ka = 
The relation between Ka an Kb is
KaXKb =10⁻¹⁴

The NADPH contributions Electrons to the cycle