Answer:
He has a speed of 16.60m/s after 35.0 meters.
Explanation:
The final velocity can be determined by means of the equations for a Uniformly Accelerated Rectilinear Motion:
(1)
The acceleration can be found by means of Newton's second law:
Where
is the net force, m is the mass and a is the acceleration.
(2)
All the forces can be easily represented in a free body diagram, as it is shown below.
Forces in the x axis:
(3)
Forces in the y axis:
(4)
Solving for the forces in the x axis:

Where
and
:


Replacing in equation (2) it is gotten:






So the acceleration for the cyclist is
, now that the acceleration is known, equation (1) can be used:

However, since he was originally at rest its initial velocity will be zero (
).



He has a speed of 16.60m/s after 35.0 meters
Answer:
0.38°
Explanation:
= Angle
m = Number
d = Distance
n = Refractive index of liquid = 1.25
a denotes air
l denotes liquid
In the case of double split interferance we have the relation

For air

For liquid

Dividing the two equations

Wavelength ratio = 

The angular separation is 0.38°
Frequency? Possibly I’m not 100% sure
Answer:
a)Yes will deform plastically
b) Will NOT experience necking
Explanation:
Given:
- Applied Force F = 850 lb
- Diameter of wire D = 0.15 in
- Yield Strength Y=45,000 psi
- Ultimate Tensile strength U = 55,000 psi
Find:
a) Whether there will be plastic deformation
b) Whether there will be necking.
Solution:
Assuming a constant Force F, the stress in the wire will be:
stress = F / Area
Area = pi*D^2 / 4
Area = pi*0.15^2 / 4 = 0.0176715 in^2
stress = 850 / 0.0176715
stress = 48,100.16 psi
Yield Strength < Applied stress > Ultimate Tensile strength
45,000 < 48,100 < 55,000
Hence, stress applied is greater than Yield strength beyond which the wire will deform plasticly but insufficient enough to reach UTS responsible for the necking to initiate. Hence, wire deforms plastically but does not experience necking.
The part that causes the disc caliper piston to retract when the brakes are released is the square-cut O-ring.
The square cut seal is the most important part of a disc brake caliper, for keeping the brake behind the piston so that when you step on the brake pedal, it releases a pressure that applied to the piston which in return applies the pad to the rotor.