Answer:
1. increases
2. increases
3. increases
Explanation:
Part 1:
First of all, since the box remains at rest, the horizontal net force acting on the box must equal zero:
F1 - fs = 0.
And this friction force fs is:
fs = Nμs,
where μs is the static coefficient of friction, and N is the normal force.
Originally, the normal force N is equal to mg, where m is the mass of the box, and g is the constant of gravity. Now, there is an additional force F2 acting downward on the box, which means it increases the normal force, since the normal force by Newton's third law, is the force due to the surface acting on the box upward:
N = mg + F2.
So, F2 is increasing, that means fs is increasing too.
Part 2:
As explained in the part 1, N = mg + F2. F2 is increasing, so the normal force is thus increasing.
Part 3:
In part 1 and part 2, we know that fs = Nμs, and since the normal force N is increasing, the maximum possible static friction force fs, max is also increasing.
Answer:
A book on a table before it falls.
A yoyo before it is released.
A raised weight.
Explanation:
These are all examples of potential energy. So I hope you can find something that is comparable from the lab.
Answer:
Her speed is 1.1 m/s, and her velocity is 0 m/s
Explanation:
Speed = Distance covered/Time
Given
Distance = 400m
Time = 6minutes = 6*60 = 360 secs
Substitute the given parameter into the formula;
Speed = 400/360
Speed = 1.1m/s
Since the track is a circular track, the displacement will be zero. She is only moving in a circular path (no direction)
Velocity = Displacement/Time
Velocity = 0/3600
Velocity = 0m/s
Hence her speed is 1.1 m/s, and her velocity is 0 m/s
F - False.
The nucleus of an atom is positively charge.