Answer:
The theory is supported by all the available observations and data.
Explanation: The scientific community will accept a theory when a sufficient body of evidence supports it. This includes experiments that refute other potential theories. Experiments should also be carried out that attempt to disprove the theory but cannot.
It should not matter who proposed the theory or who supports it, and instead should entirely be based on the quality and abundance of data supporting it.
Hope this helps!
Pls Mark me brainliest
-ya girl Lizzie
Answer:
v= s/t
Explanation:
250 km/ h =69.44m/s
S1=2 times 69.44 ≈ 139m
Next 2.5 seconds:
S2 = 100m
Average speed:
v=139m+100m/2s+2.5s = 239/4.5s = 53.2 m/s=192km/h
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>
Answer:
A) Impulse is the same for both the objects
B) The higher is the speed, the greater will be the height.
Explanation:
Part a)
The time of interaction of the two bodies i.e the hanging mass and the stick is same. Thus, force caused by dart on the block = force caused by block on the dart. Hence, impulse is the same for both the objects.
Part B
The energy will be conserved in the entire reaction process
Hence, Kinetic energy = potential energy
0.5Mv^2 = gh(md+mb)
H is directly proportional to the square of speed.
Hence, the higher is the speed, the greater will be the height.
Answer:
Doppler Theory
Explanation:
it's a theory regarding the change in wave frequency during the relative motion between a wave source and its observer.