Answer:
Geothermal power can provide consistent electricity throughout the day and year - continuous baseload power and flexible power to support the needs of variable renewable energy resources, such as wind and solar. Sustainable Investment.
Explanation:
THIS IS WHY WE SHOULD USE GEOTHERMAL ENERGY IN FUTURE
YOU CAN MARK ME AS BRAINIEST IF YOU WANT
Answer:
acceleration= velocity ÷ time
Explanation:
the question is outrageous
Answer:
F = -49.1 10³ N
Explanation:
Let's use the kinematics to find the acceleration the acceleration of the bullet that they tell us is constant
² = v₀² + 2 a x
Since the bullet is at rest, the final speed is zero
x = 11.00 cm (1 m / 100 cm) = 0.110 m
0 = v₀² + 2 a x
a = -v₀² / 2 x
a = -1320²/(2 0.110)
a = -7.92 10⁶ m / s²
With Newton's second law we find the force
F = m a
F = 6.20 10⁻³ (-7.92 10⁶)
F = -49.1 10³ N
The sign means that it is the force that the tree exerts to stop the bullet
There are some missing data in the problem. The full text is the following:
"<span>A </span>real<span> (</span>non-Carnot<span>) </span>heat engine<span>, </span>operating between heat reservoirs<span> at </span>temperatures<span> of 710 K and 270 K </span>performs 4.1 kJ<span> of </span>net work<span>, and </span>rejects<span> 9.7 </span>kJ<span> of </span>heat<span>, in a </span>single cycle<span>. The </span>thermal efficiency<span> of a </span>Carnot heat<span> engine, operating between the same </span>heat<span> reservoirs, in percent, is closest to.."
Solution:
The efficiency of a Carnot cycle working between cold temperature </span>

and hot temperature

is given by

and it represents the maximum efficiency that can be reached by a machine operating between these temperatures. If we use the temperatures of the problem,

and

, the efficiency is

Therefore, the correct answer is D) 62 %.