The temperature difference of 1 K is equivalent to the temperature difference of 1 °C. Therefore, we find the relationship between the change in °F and °C.
A change of 212 - 32 °F is the same as a change of 100 - 0 °C. Thus:
(212 - 32) °F = (100 - 0) °C
1 °C = 1.8 °F
1 K = 1.8 °F
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.
As two different current is passing at two different times, the net charge will be the different in current. So,
The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.
Here , q is the charge and R is the radius. As and R =17 cm = 0.17 m, then the voltage will be
The time is required to find to reach the voltage of 1500 V, so
So, 14 ms is required to reach the potential of 1500 V.
You are attracting electricity<span />
Answer: 7200 m
Explanation: The solution is, first convert 15 minutes to seconds.
15 mins x 60 s / 1 min = 900 s
Use the formula for speed which is v= d/t then derive for d.
d = vt
= 8 m/s ( 900s)
= 7200 m
Answer: Increasing the frequency does not increase the wavelength. They are inversely related.
Explanation:
As wavelength increases, frequency decreases. If you look at a transverse wave and it has a long wavelength, there only a few waves produce. Which means there is less frequency produced. So as wavelength increases, frequency decreases. The other way around can work to. As frequency increases, wavelength decreases. They are inversely related.