Answer:
2) 0.4 mol
Explanation:
Step 1: Given data
- Volume of the solution (V): 500 mL
- Molar concentration of the solution (M): 0.8 M = 0.8 mol/L
Step 2: Convert "V" to L
We will use the conversion factor 1 L = 1000 mL.
500 mL × 1 L/1000 mL = 0.500 L
Step 3: Calculate the moles of KBr (solute)
The molarity is the quotient between the moles of solute (n) and the liters of solution.
M = n/V
n = M × V
n = 0.8 mol/L × 0.500 L = 0.4 mol
Answer:
water, when the metastable state is reached, is cooled below the zero temperature. It freezes abruptly. this is called metastable. They are not at equilibrium per se; as at negative temperatures the only equilibrium state of water is ice.
Explanation:
Answer:
This is just my guess, but since opposites attract, then im guessing that alikes repel each other. So, they will go away from each other when the ball is released (I think).
Explanation:
Hope this helps! If it did, please mark it as brainliest! It would help a lot! Thanks! :D
Moles of K = 32.4/39 = 0.83 mole. According to stoichiometry, 2 moles of K produces 1mole of H2. Therefore, 0.83 mole of K produces = 0.83/2 = 0.415 moles of H2. Therefore number molecules of H2 = moles of H2 x 6.02 x 10^23 = 2.4983 x 10^23 molecules. Hope this helps!