Based on Hooke's law, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
<h3>What is the spring constant?</h3>
The spring constant or stiffness constant of an elastic spring is constant which describes the extent a bit forceapplied to an elastic spring will extend it.
- Spring constant, K = force/extension
Assuming, a body's muscle mechanism is a spring obeying Hooke's law, the effective mass of the spring with mass m is 1/3 of the mass of the spring = m/3
The potential energy that can be stored = ke^2 / 2
where K is spring constant and e is the extension produced.
Therefore, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
Learn more about Hooke's law at: brainly.com/question/12253978
We have no idea. We need to examine the experimental set-up. You've given us no information, except that there may have been some sort of collision.
Answer:
Lilly's speed is two times John's speed.
Explanation:
m = Mass
a = Acceleration
t = Time taken
u = Initial velocity
v = Final velocity
The force they apply on each other will be equal




Hence, Lilly's speed is two times John's speed.
Answer:
1). 
2). Toward us
3). 
4). Toward us
5). 
6). Away from us
7). 
8). Away from us
Explanation:
Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when it is moving away from the observer (that is known as the Doppler effect).
The wavelength at rest is 121.6 nm (
)

Then, for this particular case it is gotten:
Star 1: 
Star 2:
Star 3:
Star 4:
Star 1:
Toward us
Star 2:
Toward us
Star 3:

Away from us
Star 4:

Away from us
Due to that shift the velocity of the star can be determine by means of Doppler velocity.
(1)
Where
is the wavelength shift,
is the wavelength at rest, v is the velocity of the source and c is the speed of light.
(2)
<em>Case for star 1
:</em>
<em></em>
Notice that the negative velocity means that is approaching to the observer.
<em>Case for star 2
:</em>
<em>Case for star 3
:</em>
<em>Case for star 4
:</em>