1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
15

What are muons in cosmology ​

Physics
1 answer:
yanalaym [24]3 years ago
4 0

Answer:

Explanation:

Muons in the atmosphere, a component of cosmic rays. Atmospheric muons are an essential component of cosmic ray showers. When a high energy primary particle coming from space collides with a nucleus of the upper atmosphere, it generates a spray of particles which later interact in their turn.

You might be interested in
Describe how substance move from one state to another
Mekhanik [1.2K]
The temperature rises until the water reaches the next change of state — boiling. As the particles move faster and faster, they begin to break the attractive forces between each otherand move freely as steam — a gas. The process by which a substance moves from the liquid state to the gaseousstate is called boiling.
4 0
3 years ago
Read 2 more answers
You attach a meter stick to an oak tree, such that the top of the meter stick is 2.27 meters above the ground. later, an acorn f
Alexandra [31]

The acorn was at a height of <u>4.15 m</u> from the ground before it drops.

The acorn takes a time t to fall through a distance h₁, which is the length of the scale. When the acorn reaches the top of the scale, its velocity is u.

Calculate the speed of the acorn at the top of the scale, using the equation of motion,

s=ut+ \frac{1}{2} at^2

Since the acorn falls freely under gravity, its acceleration is equal to the acceleration due to gravity g.

Substitute 2.27 m for s (=h₁), 0.301 s for t and 9.8 m/s² for a (=g).

s=ut+ \frac{1}{2} at^2\\ (2.27 m)=u(0.301s)+\frac{1}{2}(9.8m/s^2)(0.301s)^2\\ u=\frac{1.8261m}{0.301s} =6.067m/s

If the acorn starts from rest and reaches a speed of 6.067 m/s at the top of the scale, it would have fallen a distance h₂ to achieve this speed.

Use the equation of motion,

v^2=u^2+2as

Substitute 6.067 m/s for v, 0 m/s for u, 9.8 m/s² for a (=g) and h₂ for s.

v^2=u^2+2as\\ (6.067m/s)^2=(0m/s)^2+2(9.8m/s^2)h_2\\ h_2=\frac{(6.067m/s)^2}{2(9.8m/s^2)} =1.878 m

The height h above the ground at which the acorn was is given by,

h=h_1+h_2=(2.27 m)+(1.878 m)=4.148 m

The acorn was at a height <u>4.15m</u> from the ground before dropping down.

3 0
2 years ago
A 75.0kg bicyclist (including the bicycle) is pedaling to the right, causing her speed to increase at a rate of 2.20m/s^2, despi
malfutka [58]

1) 4 forces

2) 165 N

3) 225 N

Explanation:

1)

There are in total 4 forces acting on the bicylist:

- The gravitational force on the byciclist, acting vertically downward, of magnitude mg, where m is the mass of the bicyclist and g is the acceleration due to gravity

- The normal force exerted by the floor on the bicyclist and the bike, N, vertically upward, and of same magnitude as the gravitational force

- The force of push F, acting horizontally forward, given by the push exerted by the bicylist on the pedals

- The air drag, R, of magnitude R = 60.0 N, acting horizontally backward, in the direction opposite to the motion of the bicyclist

2)

The magnitude of the net force on the bicyclist can be calculated by considering separately the two directions.

- Along the vertical direction, we have the gravitational force (downward) and the normal force (upward); these two forces are equal in magnitude, since the acceleration of the bicyclist along this direction is zero, therefore the net force in this direction is zero.

- Along the horizontal direction, the two forces (forward force of push and air drag) are balanced, since the acceleration is non-zero, so we can use Newton's second law of motion to find the net force on the bicylist:

F_{net}=ma

where

F_{net} is the net force

m = 75.0 kg is the mass of the bicyclist

a=2.20 m/s^2 is its acceleration

Solving, we find the net force:

F_{net}=(75.0)(2.20)=165 N

3)

In this part, we basically want to find the forward force of push, F.

We can rewrite the net force acting on the bicyclist as

F_{net}=F-R

where:

F is the forward force of push

R is the air drag

We know that:

F_{net}=165 N is the net force on the bicyclist

R = 60.0 N is the magnitude of the air drag

Therefore, by re-arranging the equation, we can find the force generated by the bicylicst by pedaling:

F=F_{net}+R=165+60=225 N

6 0
3 years ago
What's the weight of a 30x30x50 cm body with the density of 1.8/cm cube?
grin007 [14]

Answer:

The weight of the body, W = 793.8 m/s²

Explanation:

Given,

The volume of the body, v = 45,000 cm³

The density of the body, ρ = 1.8 g/cm³

The mass of the body is given by the formula,

                                  m = ρ x v

                                      = 1.8 g/cm³ x 45,000 cm³

                                      = 81,000 g

Hence, the mass of the body is m = 81 kg

The weight of the body,

                                           W = m x g

                                                = 81 kg x 9.8 m/s²

                                                = 793.8 m/s²

Hence, the weight of the body, W = 793.8 m/s²

3 0
2 years ago
A block of wood is tied to the bottom of a large container of water so that the block is completely submerged. The density of th
jeka57 [31]

Answer:

58.9 N

Explanation:

The wood is buoyed up by the mass of the water is displaces

  wood volume = .030 m^3 = 30 000 cm^3

   mass of water displaced = 30 000 g = 30  kg

wood mass =   800 kg/m^3  * .030 m^3 = 24 kg

so tension in string    = mg   = (   30 kg - 24 kg) * 9.81 m/s^2 = 58.9 N

6 0
1 year ago
Other questions:
  • ANSWER ASAPPPPPPPP BE 100% CORRECT
    11·1 answer
  • Diego rivera's mural for the lobby of the rca building was destroyed because
    5·1 answer
  • How does science restore diversity to areas where human activity has interfered with the natural structure of a habit/ecosystem?
    6·1 answer
  • A proton, an alpha particle (a bare helium nucleus), and a singly ionized helium atom are accelerated through a potential differ
    13·1 answer
  • There are 5510 lines per centimeter in a grating that is used with light whose wavelegth is 467 nm. A flat observation screen is
    14·1 answer
  • Sophie says that geologic maps do not matter because she gets no benefits from them. Why is Sophie wrong? a. She can see the ran
    10·2 answers
  • The note "Middle C" is known to have a frequency of 261.6 Hz. What would
    10·1 answer
  • What happend to the egg in the fresh water glass?
    5·2 answers
  • The acceleration due to gravity on the moon is about 5.4ft/s2. if your weight is 150lbf on earth
    10·1 answer
  • The mercury thermometer operates on the principle of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!