Answer:
The bird's speed immediately after swallowing is 4.98 m/s.
Explanation:
Given that,
Mass of bird = 290 g
Speed = 6.2 m/s
Mass of sees = 9.0 g
Speed = 34 m/s
We need to calculate the bird's speed immediately after swallowing
Using conservation of momentum

Put the value into the formula



Hence, The bird's speed immediately after swallowing is 4.98 m/s.
The solution for this problem is:The charge would be now equal to:(electric constant) multiplied by the (field strength) multiplied by the (area) so plugging in our values, will give us:8.85 * 10^-12 As / (V * m) * 3 * 10^6 V/m * 0.055 m^2 = 1.46 e-6 amperes would be the answer
Okay, so the density of water is 1g/cm3. In order for the cube to float, it has to be less than 1, and it will sink if it is more than 1 g/cm3. Use a triple beam balance to weigh the cube, looking at the metric ruler on the balance. Then, if the cube's density is more than 1, then you know it will float. If the density is less than 1, you know it will sink.
hope this helps, and I didn't know how to use the word "metric ruler"
Answer:
Time period, T = 403.78 years
Explanation:
It is given that,
Orbital distance, 
Mass of the Earth, 
Mass of the planet, 
Let T is the orbital period of this planet. The Kepler's third law of motion gives the relation between the orbital period and the orbital distance.



or
T = 403.78 years
So, the orbital period of this planet is 404 years. Hence, this is the required solution.